Herein, we report the study on RF-sputtered transition metal oxide thin films of Zinc oxide, Magnesium oxide, and Aluminum oxide as an antireflection coating on silicon-based solar cells and their influence on energy conversion. The transmission spectrum of all sputtered metal oxides was studied using a UV-visible spectrophotometer. The phase formation and microstructure analysis of these sputtered oxides were studied using glass for the destructive test along with the device. The x-ray diffraction and cross-section scanning electron microscopy of sputtered glass confirmed a singlephase structure along with nearly equal desired deposition thickness. The thicknesses of sputtered films were estimated using variable angle ellipsometry and the same was confirmed from cross-section scanning electron micrograph. The chemical composition and oxidation state of thin films deposited on glass were established from x-ray photoemission spectroscopy. The ability of a fabricated device deposited with the antireflection layer in converting photon energy to electrical energy was studied using a solar simulator under 1 sun condition. The ability to collect charge carriers of the antireflection coated device as a function of wavelength was also studied using quantum efficiency measurement.
GaAs solar cells hold the record for the highest single band-gap cell efficiency. Successful application of these cells in advanced space-borne systems demand characterization of cell properties like dark current under different ambient conditions and the stability of the cells against particle irradiation in space. In this paper, the results of the studies carried out on the effect of 8 MeV electron irradiation on the electrical properties of GaAs solar cells are presented. The I-V (current-voltage) characteristics of the cells under dark and AM1.5 illumination condition are studied and 8 MeV electron irradiation was carried out on the cells where they were exposed to graded doses of electrons from 1 to 100 kGy. The devices were also characterized using capacitance measurements at various frequencies before and after irradiation. The effect of electron irradiation on the solar cell parameters was studied. It is found that only small changes were observed in the GaAs solar cell parameters up to an electron dose of 100 kGy, exhibiting good tolerance for electrons of 8 MeV energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.