We report a two-photon responsive drug delivery system (DDS) namely, p-hydroxyphenacyl-naphthalene-chlorambucil (pHP-Naph-Cbl) having two-photon absorption (TPA) cross-section of ≥ 20 GM in the phototherapeutic window (700 nm). Our DDS exhibited...
The expression of polyspecific membrane transporters is one important mechanism by which cells can obtain resistance to structurally different antibiotics and cytotoxic agents. These transporters reduce intracellular drug concentrations to subtoxic levels by mediating drug efflux across the cell envelope. The major facilitator superfamily multidrug transporter LmrP from Lactococcus lactis catalyses drug efflux in a membrane potential and chemical proton gradient-dependent fashion. To enable the interaction with protons and cationic substrates, LmrP contains catalytic carboxyl residues on the surface of a large interior chamber that is formed by transmembrane helices. These residues colocalise together with polar and aromatic residues, and are predicted to be present in two clusters. To investigate the functional role of the catalytic carboxylates, we generated mutant proteins catalysing membrane potential-independent dye efflux by removing one of the carboxyl residues in Cluster 1. We then relocated this carboxyl residue to six positions on the surface of the interior chamber, and tested for restoration of wildtype energetics. The reinsertion at positions towards Cluster 2 reinstated the membrane potential dependence of dye efflux. Our data uncover a remarkable plasticity in proton interactions in LmrP, which is a consequence of the flexibility in the location of key residues that are responsible for proton/multidrug antiport.The ability of microbes to develop resistance to cytotoxic drugs, and to adapt rapidly to changes in the exposure to these compounds is an extremely important medical problem 1 . Drug resistance can be specific for a single drug or class of drugs, or occur simultaneously for a wide variety of toxic compounds that are structurally and functionally unrelated. The latter phenomenon is called multidrug resistance, and is recognised as an important mechanism of bacterial resistance to valuable clinical antibiotics. In many cases, the development of multidrug resistance is due to the enhanced expression levels of drug pumps in the cell 2 . These pumps mediate the extrusion of antimicrobials across the cell envelope, away from intracellular targets. Enzyme-ligand interactions are usually based on very specific interactions that allow discrimination between enantiomers of the same ligand. The ability of multidrug transporters to recognise a broad spectrum of structurally unrelated drugs is intriguing.Multidrug transporters have been reinvented on multiple occasions in the course of evolution, and are found in six different protein families: the ATP-binding cassette (ABC) superfamily, resistance-nodulation-cell division (RND) family, multiple antibiotics and toxin extrusion (MATE) family, small multidrug resistance (SMR) family, proteobacterial antimicrobial compound efflux (PACE) family, and major facilitator superfamily (MFS) 3,4 . It is generally accepted that members of the ABC family couple drug efflux to ATP binding and hydrolysis, whereas the members of the other 5 families operate by a secon...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.