In this study, a sliding mode surface controller (SMC) designed for a quadcopter is experimentally tested. The SMC was combined with disturbance observers in six degrees of freedom of the quadcopter to effectively reject external disturbances. While respecting stability conditions all control parameters were automatically initialized and tuned using a simulation-based offline particle swarm optimization (PSO) algorithm, followed by onboard manual fine-tuning. To demonstrate its superiority, the SMC was compared with a PSO-optimized PID controller in terms of agility, stability, and the accurate tracking of hover, rectangular, and figure-eight pattern trajectories. To evaluate its robustness, the SMC controller was extensively tested in a small, enclosed, turbulent space while being subjected to a series of external disturbances, such as hanging payloads and lateral wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.