We have developed a method for assembling genetic pathways for expression in Saccharomyces cerevisiae. Our pathway assembly method, called VEGAS (Versatile genetic assembly system), exploits the native capacity of S. cerevisiae to perform homologous recombination and efficiently join sequences with terminal homology. In the VEGAS workflow, terminal homology between adjacent pathway genes and the assembly vector is encoded by ‘VEGAS adapter’ (VA) sequences, which are orthogonal in sequence with respect to the yeast genome. Prior to pathway assembly by VEGAS in S. cerevisiae, each gene is assigned an appropriate pair of VAs and assembled using a previously described technique called yeast Golden Gate (yGG). Here we describe the application of yGG specifically to building transcription units for VEGAS assembly as well as the VEGAS methodology. We demonstrate the assembly of four-, five- and six-gene pathways by VEGAS to generate S. cerevisiae cells synthesizing β-carotene and violacein. Moreover, we demonstrate the capacity of yGG coupled to VEGAS for combinatorial assembly.
Subcallosal cingulate cortex deep brain stimulation (SCC-DBS) is an experimental therapy for treatment-resistant depression (TRD). Refinement and optimization of SCC-DBS will benefit from increased study of SCC electrophysiology in context of ongoing high-frequency SCC-DBS therapy. The study objective was a 7-mo observation of frequency-domain 1/ f slope in off-stimulation local field potentials (SCC-LFPs) alongside standardized measurements of depression severity in 4 patients undergoing SCC-DBS. SCC was implanted bilaterally with a combined neurostimulation-LFP recording system. Following a 1-mo off-stimulation postoperative phase with multiple daily recordings, patients received bilateral SCC-DBS therapy (130 Hz, 90 μs) and weekly resting-state SCC-LFP recordings over a 6-mo treatment phase. 1/ f slopes for each time point were estimated via linear regression of log-transformed Welch periodograms. General linear mixed-effects models were constructed to estimate pretreatment sources of 1/ f slope variance, and 95% bootstrap confidence intervals were constructed to estimate treatment phase 1/ f slope association with treatment response (50% decrease in preimplantation symptom severity). Results show the time of recording was a prominent source of pretreatment 1/ f slope variance bilaterally, with increased 1/ f slope magnitude observed during night hours (2300–0659). Increase in right 1/ f slope was observed in the setting of treatment response, with bootstrap analysis supporting this observation in 3 of 4 subjects. We conclude that 1/ f slope can be measured longitudinally in a combined SCC-DBS/LFP recording system and likely conforms to known 1/ f circadian variability. The preliminary evidence of 1/ f slope increase during treatment response suggests a potential utility as a candidate biomarker for ongoing development of adaptive TRD-neuromodulation strategies. NEW & NOTEWORTHY In four patients with treatment-resistant depression undergoing therapeutic deep brain stimulation (DBS), we present the first longitudinal observations of local field potentials (LFP) from the subcallosal cingulate region outside the postoperative period. Specifically, our results demonstrate that frequency-domain 1/ f activity is measurable in a combined DBS-LFP recording system and that right hemisphere recordings appear sensitive to mood state, thus suggesting a potential readout suitable for consideration in ongoing efforts to develop adaptive DBS delivery systems.
Deep brain stimulation (DBS) to the subcallosal cingulate cortex (SCC) is an emerging therapy for treatment resistant depression. Precision targeting of specific white matter fibers is now central to the model of SCC DBS treatment efficacy. A method to confirm SCC DBS target engagement is needed to reduce procedural variance across treatment providers and to optimize DBS parameters for individual patients. We examined the reliability of a novel cortical evoked response that is time-locked to a 2 Hz DBS pulse and shows the propagation of signal from the DBS target. The evoked response was detected in four individuals as a stereotyped series of components within 150 ms of a 6 V DBS pulse, each showing coherent topography on the head surface. Test-retest reliability across four repeated measures over 14 months met or exceeded standards for valid test construction in three of four patients. Several observations in this pilot sample demonstrate the prospective utility of this method to confirm surgical target engagement and instruct parameter selection. The topography of an orbital frontal component on the head surface showed specificity for patterns of forceps minor activation, which may provide a means to confirm DBS location with respect to key white matter structures. A divergent cortical response to unilateral stimulation of left (vs. right) hemisphere underscores the need for feedback acuity on the level of a single electrode, despite bilateral presentation of therapeutic stimulation. Results demonstrate viability of this method to explore patient-specific cortical responsivity to DBS for brain-circuit pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.