Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we have developed new devices integrating ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors connected using many fewer wires. We used this system to record novel spatial properties of brain activity in vivo, including sleep spindles, single-trial visual evoked responses, and electrographic seizures. Our electrode array allowed us to discover that seizures may manifest as recurrent spiral waves which propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface (BMI) devices. KeywordsMultielectrode array; electrode array; flexible electronics; multiplexed electrode; cortical surface electrode; foldable electrode; ECoG; μECoG; brain machine interface; high temporal resolution; high spatial resolution; spindle; visual neuroscience; spiral wave; epilepsy; seizure; epileptiform spike; interhemispheric fissure; silicon nanoribbonThe utility of high-resolution neural recordings from the cortical surface for basic research and clinical medicine has been shown for a wide range of applications. Spatial spectral analysis of electrocorticograms (ECoG) from the superior temporal gyrus and motor cortex demonstrate that electrode spacing should be 1.25 mm or closer in humans to sufficiently capture the rich spatial information available 1 . Motor control signals 2 and spoken words 3 can be decoded with substantially improved performance utilizing electrodes spaced 1 mm apart or less. In occipital cortex, arrays with 500 μm spacing have demonstrated micro-field evoked potentials that can distinguish ocular dominance columns 4 . The spatial scale for some pathologic signals is also submillimeter, based on observations of microseizures, microdischarges and high frequency oscillations in epileptic brain 5,6 .Yet the subdural electrodes in use clinically, for example, in the diagnosis and treatment of epilepsy, are much larger (~3 mm diameter) and have large interspacing (~10mm) because of the clinical need to record from large areas of the brain surface (80 mm × 80 mm) in order to accurately localize seizure generating brain regions. Large area electrode arrays with high spatial resolution are also needed in BMI applications to account for variability in the location of brain functions, which can vary by ~5mm across subjects [7][8][9][10] . High-resolution interface over a large area has previously been impossible due to the infeasibility of connecting thousands of wires in the small intracranial space. Author Manuscript Author ManuscriptAuthor Manuscript Author ManuscriptMuch of the existing researc...
Subcallosal cingulate cortex deep brain stimulation (SCC-DBS) is an experimental therapy for treatment-resistant depression (TRD). Refinement and optimization of SCC-DBS will benefit from increased study of SCC electrophysiology in context of ongoing high-frequency SCC-DBS therapy. The study objective was a 7-mo observation of frequency-domain 1/ f slope in off-stimulation local field potentials (SCC-LFPs) alongside standardized measurements of depression severity in 4 patients undergoing SCC-DBS. SCC was implanted bilaterally with a combined neurostimulation-LFP recording system. Following a 1-mo off-stimulation postoperative phase with multiple daily recordings, patients received bilateral SCC-DBS therapy (130 Hz, 90 μs) and weekly resting-state SCC-LFP recordings over a 6-mo treatment phase. 1/ f slopes for each time point were estimated via linear regression of log-transformed Welch periodograms. General linear mixed-effects models were constructed to estimate pretreatment sources of 1/ f slope variance, and 95% bootstrap confidence intervals were constructed to estimate treatment phase 1/ f slope association with treatment response (50% decrease in preimplantation symptom severity). Results show the time of recording was a prominent source of pretreatment 1/ f slope variance bilaterally, with increased 1/ f slope magnitude observed during night hours (2300–0659). Increase in right 1/ f slope was observed in the setting of treatment response, with bootstrap analysis supporting this observation in 3 of 4 subjects. We conclude that 1/ f slope can be measured longitudinally in a combined SCC-DBS/LFP recording system and likely conforms to known 1/ f circadian variability. The preliminary evidence of 1/ f slope increase during treatment response suggests a potential utility as a candidate biomarker for ongoing development of adaptive TRD-neuromodulation strategies. NEW & NOTEWORTHY In four patients with treatment-resistant depression undergoing therapeutic deep brain stimulation (DBS), we present the first longitudinal observations of local field potentials (LFP) from the subcallosal cingulate region outside the postoperative period. Specifically, our results demonstrate that frequency-domain 1/ f activity is measurable in a combined DBS-LFP recording system and that right hemisphere recordings appear sensitive to mood state, thus suggesting a potential readout suitable for consideration in ongoing efforts to develop adaptive DBS delivery systems.
The renaissance in the use of encephalography-based research methods to probe the pathophysiology of neuropsychiatric disorders is well afoot and continues to advance. Building on the platform of neuroimaging evidence on brain circuit models, magnetoencephalography, scalp electroencephalography, and even invasive electroencephalography are now being used to characterize brain network dysfunctions that underlie major depressive disorder using brain oscillation measurements and associated treatment responses. Such multiple encephalography modalities provide avenues to study pathologic network dynamics with high temporal resolution and over long time courses, opportunities to complement neuroimaging methods and findings, and new approaches to identify quantitative biomarkers that indicate critical targets for brain therapy. Such goals have been facilitated by the ongoing testing of novel invasive neuromodulation therapies, notably, deep brain stimulation, where clinically relevant treatment effects can be monitored at multiple brain sites in a time-locked causal manner. We review key brain rhythms identified in major depressive disorder as foundation for development of putative biomarkers for objectively evaluating neuromodulation success and for guiding deep brain stimulation or other target-based neuromodulation strategies for treatment-resistant depression patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.