We study the problem of group recommendation. Recommendation is an important information exploration paradigm that retrieves interesting items for users based on their profiles and past activities. Single user recommendation has received significant attention in the past due to its extensive use in Amazon and Netflix. How to recommend to a group of users who may or may not share similar tastes, however, is still an open problem. The need for group recommendation arises in many scenarios: a movie for friends to watch together, a travel destination for a family to spend a holiday break, and a good restaurant for colleagues to have a working lunch. Intuitively, items that are ideal for recommendation to a group may be quite different from those for individual members. In this paper, we analyze the desiderata of group recommendation and propose a formal semantics that accounts for both item relevance to a group and disagreements among group members. We design and implement algorithms for efficiently computing group recommendations. We evaluate our group recommendation method through a comprehensive user study conducted on Amazon Mechanical Turk and demonstrate that incorporating disagreements is critical to the effectiveness of group recommendation. We further evaluate the efficiency and scalability of our algorithms on the MovieLens data set with 10M ratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.