The possibilities to resolve the exponential increase in energy demand using water splitting have also triggered huge worldwide attention towards the oxygen evolution reaction using an efficient, earth-abundant and low-cost electrocatalyst.
The present study aims to determine the impact of COVID-19 pandemic confinement on air quality among populous sites of four major metropolitan cities in India (Delhi, Mumbai, Kolkata, and Chennai) from January 1, 2020 to May 31, 2020 by analyzing particulate matter (PM2.5 and PM10), nitrogen dioxide (NO 2), ammonia (NH 3), sulfur dioxide (SO 2), carbon monoxide (CO), and ozone levels. The most prominent pollutant concerning air quality index (AQI) was determined by Pearson's correlation analysis and unpaired Welch's two-sample t test was carried out to measure the statistically significant reduction in average AQI for all the four sites. AQI significantly plummeted by 44%, 59%, 59%, and 6% in ITO-Delhi, Worli-Mumbai, Jadavpur-Kolkata, and Manali Village-Chennai respectively. The findings conclude a significant improvement in air quality with respect to reduction of 49-73%, 17-63%, 30-74%, and 15-58% in the mean concentration of PM2.5, PM10, NH 3 , and SO 2 respectively during the confinement for the studied locations. The p values for all of the four studied locations were found significantly less than the 5% level of significance for Welch's t test analysis. In addition, reduced AQI values were highly correlated with prominent pollutants (PM2.5 and PM10) during Pearson's correlation analysis. These positive results due to pandemic imprisonment might aid to alter the current policies and strategies of pollution control for a safe and sustainable environment.
Human survival might be at stake if the rate of carbon emission goes on like this in the near future. A clean energy alternative is a must to resolve the...
Hydrogen is one of the cleanest forms of energy carrier which can solve the twin problem of exhaustion of fossil fuels and climate change. The exploration of low-cost and earthabundant electrocatalysts for hydrogen generation process is an emerging area of research. Profound catalyst tailoring with mutually contrast phases on a porous support for crafting large hydrogen evolution reaction (HER) active sites increases the catalytic activity in many folds. Herein, a porous silica-supported molybdenum phosphide and molybdenum carbide nanoparticle (SiMoCP) has been synthesized. The intermingled porous molybdenum carbide and molybdenum phosphide nanohybrid shows excellent catalytic activity toward hydrogen evolution. Such a modified nanostructured electrocatalyst enhances the electrode−electrolyte interaction and suppresses the charge transfer resistance. As a result, the electrocatalyst (SiMoCP) accomplishes very high HER activity with an onset potential of 53 mV and an overpotential of 88 mV at a current density of 10 mA cm −2 in the acidic medium. Furthermore, the SiMoCP catalyst showed a Tafel slope value of 37 mV dec −1 with long-term durability of 5000 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.