Lynch syndrome (LS) is the most common of all inherited cancer syndromes, associated with substantially elevated risks for colonic and extracolonic malignancies, earlier onset and high rates of multiple primary cancers. At the genetic level, it is caused by a defective mismatch repair (MMR) system due to presence of germline defects in at least one of the MMR genes- MLH1, MSH2, MSH6, PMS2 or EPCAM. An impaired MMR function during replication introduces infidelity in DNA sequence and leads to ubiquitous mutations at simple repetitive sequences (microsatellites), causing microsatellite instability (MSI). Although previously, clinicopathological criteria such as Amsterdam I/II and Revised Bethesda Guidelines were commonly used to identify suspected LS mutation carriers, there has been a recent push towards universally testing, especially in case of colorectal cancers (CRCs), through immunohistochemistry for expression of MMR proteins or through molecular tests (polymerase chain reaction, PCR) for MSI, in order to identify LS mutation carriers and subject them to genetic testing to ascertain the specific gene implicated. In this review, we have discussed the latest diagnostic strategies and the current screening and treatment guidelines for colonic and extracolonic cancers in clinically affected and at-risk individuals for LS.
Most of what we know about gene transcription comes from the view of cells as molecular machines: focusing on the role of molecular modifications to the proteins carrying out transcriptional reactions at a loci-by-loci basis. This view ignores a critical reality: biological reactions do not happen in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D, of chromatin correspond to simultaneous increases in chromatin accessibility and compaction heterogeneity. Using these predictions, we demonstrate experimentally that nanoscopic changes to chromatin D within thirty minutes correlate with concomitant enhancement and suppression of transcription. Further, we show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating global patterns of gene expression. Since physical organization of chromatin is frequently altered in oncogenesis, this work provides evidence pairing molecular function to physical structure for processes frequently altered during tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.