Abstract. k-anonymization techniques have been the focus of intense research in the last few years. An important requirement for such techniques is to ensure anonymization of data while at the same time minimizing the information loss resulting from data modifications. In this paper we propose an approach that uses the idea of clustering to minimize information loss and thus ensure good data quality. The key observation here is that data records that are naturally similar to each other should be part of the same equivalence class. We thus formulate a specific clustering problem, referred to as k-member clustering problem. We prove that this problem is NP-hard and present a greedy heuristic, the complexity of which is in O(n 2 ). As part of our approach we develop a suitable metric to estimate the information loss introduced by generalizations, which works for both numeric and categorical data.
A considerable effort has been recently devoted to the development of Database Management Systems (DBMS) which guarantee high assurance and security. An important component of any strong security solution is represented by Intrusion Detection (ID) techniques, able to detect anomalous behavior of applications and users. To date, however, there have been few ID mechanisms proposed which are specifically tailored to function within the DBMS. In this paper, we propose such a mechanism. Our approach is based on mining SQL queries stored in database audit log files. The result of the mining process is used to form profiles that can model normal database access behavior and identify intruders. We consider two different scenarios while addressing the problem. In the first case, we assume that the database has a Role Based Access Control (RBAC) model in place. Under a RBAC system permissions are associated with roles, grouping several users, rather than with single users. Our ID system is able to determine role intruders, that is, individuals while holding a specific role, behave differently than expected. An important advantage of providing an ID technique specifically tailored to RBAC databases is that it can help in protecting against insider threats. Furthermore, the existence of roles makes our approach usable even for databases with large user population. In the second scenario, This material is based upon work supported by the National Science Foundation under Grant No. 0430274 and the sponsors of CERIAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.