Abstract-The increasing trend of embedding positioning capabilities (e.g., GPS) in mobile devices facilitates the widespread use of Location Based Services. For such applications to succeed, privacy and confidentiality are essential. Existing privacyenhancing techniques rely on encryption to safeguard communication channels, and on pseudonyms to protect user identities. Nevertheless, the query contents may disclose the physical location of the user.In this paper, we present a framework for preventing locationbased identity inference of users who issue spatial queries to Location Based Services. We propose transformations based on the well-established K-anonymity concept to compute exact answers for range and nearest neighbor search, without revealing the query source. Our methods optimize the entire process of anonymizing the requests and processing the transformed spatial queries. Extensive experimental studies suggest that the proposed techniques are applicable to real-life scenarios with numerous mobile users.
Spatial Crowdsourcing (SC) is a transformative platform that engages individuals, groups and communities in the act of collecting, analyzing, and disseminating environmental, social and other spatio-temporal information. The objective of SC is to outsource a set of spatio-temporal tasks to a set of workers, i.e., individuals with mobile devices that perform the tasks by physically traveling to specified locations of interest. However, current solutions require the workers, who in many cases are simply volunteering for a cause, to disclose their locations to untrustworthy entities. In this paper, we introduce a framework for protecting location privacy of workers participating in SC tasks. We argue that existing location privacy techniques are not sufficient for SC, and we propose a mechanism based on differential privacy and geocasting that achieves effective SC services while offering privacy guarantees to workers. We investigate analytical models and task assignment strategies that balance multiple crucial aspects of SC functionality, such as task completion rate, worker travel distance and system overhead. Extensive experimental results on real-world datasets show that the proposed technique protects workers' location privacy without incurring significant performance metrics penalties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.