Spatial Crowdsourcing (SC) is a transformative platform that engages individuals, groups and communities in the act of collecting, analyzing, and disseminating environmental, social and other spatio-temporal information. The objective of SC is to outsource a set of spatio-temporal tasks to a set of workers, i.e., individuals with mobile devices that perform the tasks by physically traveling to specified locations of interest. However, current solutions require the workers, who in many cases are simply volunteering for a cause, to disclose their locations to untrustworthy entities. In this paper, we introduce a framework for protecting location privacy of workers participating in SC tasks. We argue that existing location privacy techniques are not sufficient for SC, and we propose a mechanism based on differential privacy and geocasting that achieves effective SC services while offering privacy guarantees to workers. We investigate analytical models and task assignment strategies that balance multiple crucial aspects of SC functionality, such as task completion rate, worker travel distance and system overhead. Extensive experimental results on real-world datasets show that the proposed technique protects workers' location privacy without incurring significant performance metrics penalties.
With the popularity of mobile devices, spatial crowdsourcing is rising as a new framework that enables human workers to solve tasks in the physical world. With spatial crowdsourcing, the goal is to crowdsource a set of spatiotemporal tasks (i.e., tasks related to time and location) to a set of workers, which requires the workers to physically travel to those locations in order to perform the tasks. In this article, we focus on one class of spatial crowdsourcing, in which the workers send their locations to the server and thereafter the server assigns to every worker tasks in proximity to the worker's location with the aim of maximizing the overall number of assigned tasks. We formally define this maximum task assignment (MTA) problem in spatial crowdsourcing, and identify its challenges. We propose alternative solutions to address these challenges by exploiting the spatial properties of the problem space, including the spatial distribution and the travel cost of the workers. MTA is based on the assumptions that all tasks are of the same type and all workers are equally qualified in performing the tasks. Meanwhile, different types of tasks may require workers with various skill sets or expertise. Subsequently, we extend MTA by taking the expertise of the workers into consideration. We refer to this problem as the maximum score assignment (MSA) problem and show its practicality and generality. Extensive experiments with various synthetic and two real-world datasets show the applicability of our proposed framework.
Spatial Crowdsourcing (SC) is a transformative platform that engages individuals in collecting and analyzing environmental, social and other spatio-temporal information. SC outsources spatio-temporal tasks to a set of workers, i.e., individuals with mobile devices that perform the tasks by physically traveling to specified locations. However, current solutions require the workers to disclose their locations to untrusted parties. In this paper, we introduce a framework for protecting location privacy of workers participating in SC tasks. We propose a mechanism based on differential privacy and geocasting that achieves effective SC services while offering privacy guarantees to workers. We address scenarios with both static and dynamic (i.e., moving) datasets of workers. Experimental results on real-world data show that the proposed technique protects location privacy without incurring significant performance overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.