Abstract-The increasing trend of embedding positioning capabilities (e.g., GPS) in mobile devices facilitates the widespread use of Location Based Services. For such applications to succeed, privacy and confidentiality are essential. Existing privacyenhancing techniques rely on encryption to safeguard communication channels, and on pseudonyms to protect user identities. Nevertheless, the query contents may disclose the physical location of the user.In this paper, we present a framework for preventing locationbased identity inference of users who issue spatial queries to Location Based Services. We propose transformations based on the well-established K-anonymity concept to compute exact answers for range and nearest neighbor search, without revealing the query source. Our methods optimize the entire process of anonymizing the requests and processing the transformed spatial queries. Extensive experimental studies suggest that the proposed techniques are applicable to real-life scenarios with numerous mobile users.
Given two spatial datasets P (e.g., facilities) and Q (queries), an aggregate nearest neighbor (ANN) query retrieves the point(s) of P with the smallest aggregate distance(s) to points in Q. Assuming, for example, n users at locations q 1 , . . . q n , an ANN query outputs the facility p ∈ P that minimizes the sum of distances |pq i | for 1 ≤ i ≤ n that the users have to travel in order to meet there. Similarly, another ANN query may report the point p ∈ P that minimizes the maximum distance that any user has to travel, or the minimum distance from some user to his/her closest facility. If Q fits in memory and P is indexed by an R-tree, we develop algorithms for aggregate nearest neighbors that capture several versions of the problem, including weighted queries and incremental reporting of results. Then, we analyze their performance and propose cost models for query optimization. Finally, we extend our techniques for disk-resident queries and approximate ANN retrieval. The efficiency of the algorithms and the accuracy of the cost models are evaluated through extensive experiments with real and synthetic datasets.
Given a dataset P and a preference function f , a top-k query retrieves the k tuples in P with the highest scores according to f . Even though the problem is well-studied in conventional databases, the existing methods are inapplicable to highly dynamic environments involving numerous longrunning queries. This paper studies continuous monitoring of top-k queries over a fixed-size window W of the most recent data. The window size can be expressed either in terms of the number of active tuples or time units. We propose a general methodology for top-k monitoring that restricts processing to the sub-domains of the workspace that influence the result of some query. To cope with high stream rates and provide fast answers in an on-line fashion, the data in W reside in main memory. The valid records are indexed by a grid structure, which also maintains book-keeping information. We present two processing techniques: the first one computes the new answer of a query whenever some of the current top-k points expire; the second one partially precomputes the future changes in the result, achieving better running time at the expense of slightly higher space requirements. We analyze the performance of both algorithms and evaluate their efficiency through extensive experiments. Finally, we extend the proposed framework to other query types and a different data stream model.
Query answers from servers operated by third parties need to be verified, as the third parties may not be trusted or their servers may be compromised. Most of the existing authentication methods construct validity proofs based on the Merkle hash tree (MHT). The MHT, however, imposes severe concurrency constraints that slow down data updates. We introduce a protocol, built upon signature aggregation, for checking the authenticity, completeness and freshness of query answers. The protocol offers the important property of allowing new data to be disseminated immediately, while ensuring that outdated values beyond a pre-set age can be detected. We also propose an efficient verification technique for ad-hoc equijoins, for which no practical solution existed. In addition, for servers that need to process heavy query workloads, we introduce a mechanism that significantly reduces the proof construction time by caching just a small number of strategically chosen aggregate signatures. The efficiency and efficacy of our proposed mechanisms are confirmed through extensive experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.