Query answers from servers operated by third parties need to be verified, as the third parties may not be trusted or their servers may be compromised. Most of the existing authentication methods construct validity proofs based on the Merkle hash tree (MHT). The MHT, however, imposes severe concurrency constraints that slow down data updates. We introduce a protocol, built upon signature aggregation, for checking the authenticity, completeness and freshness of query answers. The protocol offers the important property of allowing new data to be disseminated immediately, while ensuring that outdated values beyond a pre-set age can be detected. We also propose an efficient verification technique for ad-hoc equijoins, for which no practical solution existed. In addition, for servers that need to process heavy query workloads, we introduce a mechanism that significantly reduces the proof construction time by caching just a small number of strategically chosen aggregate signatures. The efficiency and efficacy of our proposed mechanisms are confirmed through extensive experiments.
Missing values widely exist in many real-world datasets, which hinders the performing of advanced data analytics. Properly filling these missing values is crucial but challenging, especially when the missing rate is high. Many approaches have been proposed for missing value imputation (MVI), but they are mostly heuristics-based, lacking a principled foundation and do not perform satisfactorily in practice. In this paper, we propose a probabilistic framework based on deep generative models for MVI. Under this framework, imputing the missing entries amounts to seeking a fixed-point solution between two conditional distributions defined on the missing entries and latent variables respectively. These distributions are parameterized by deep neural networks (DNNs) which possess high approximation power and can capture the nonlinear relationships between missing entries and the observed values. The learning of weight parameters of DNNs is performed by maximizing an approximation of the log-likelihood of observed values. We conducted extensive evaluation on 13 datasets and compared with 11 baselines methods, where our methods largely outperforms the baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.