The present investigation titled "Effect of levels of phosphorous and zinc on growth and yield of Greengram (Vigna radiata L.
This paper describes the image acquisition and processing methodology, including surface emissivity and atmospheric corrections, for generating surface temperatures of two active hydrothermal systems in Yellowstone National Park. Airborne thermal infrared (8-12 μm) images were obtained annually from 2007 to 2012 using a FLIR SC640 thermal infrared camera system. Thermal infrared image acquisitions occurred under clear-sky conditions after sunset to meet the objective of providing high-spatial resolution, georectified imagery for hydrothermal monitoring. Comparisons of corrected radiative temperature maps with measured ground and water kinetic temperatures at flight times provided an assessment of temperature accuracy. A repeatable, time-sequence of images for Hot Spring Basin (2007) and Norris Geyser Basin (2008 documented fracture-related changes in temperature and fluid flow for both hydrothermal systems, highlighting the utility of methods for synoptic monitoring of Yellowstone National Park's hydrothermal systems.
High resolution airborne multispectral and thermal infrared imagery was acquired over the Mojave River, California with the Utah State University airborne remote sensing system integrated with the LASSI imaging Lidar also built and operated at USU. The data were acquired in pre-established mapping blocks over a 2 day period covering approximately 144 Km of the Mojave River floodplain and riparian zone, approximately 1500 meters in width. The multispectral imagery (green, red and near-infrared bands) was ortho-rectified using the Lidar point cloud data through a direct geo-referencing technique. Thermal Infrared imagery was rectified to the multispectral ortho-mosaics. The lidar point cloud data was classified to separate ground surface returns from vegetation returns as well as structures such as buildings, bridges etc. One-meter DEM's were produced from the surface returns along with vegetation canopy height also at 1-meter grids. Two surface energy balance models that use remote sensing inputs were applied to the high resolution imagery, namely the SEBAL and the Two Source Model. The model parameterizations were slightly modified to accept high resolution imagery (1-meter) as well as the lidar-based vegetation height product, which was used to estimate the aerodynamic roughness length. Both models produced very similar results in terms of latent heat fluxes (LE). Instantaneous LE values were extrapolated to daily evapotranspiration rates (ET) using the reference ET fraction, with data obtained from a local weather station. Seasonal rates were obtained by extrapolating the reference ET fraction according to the seasonal growth habits of the different species. Vegetation species distribution and area were obtained from classification of the multispectral imagery. Results indicate that cottonwood and salt cedar (tamarisk) had the highest evapotranspiration rates followed by mesophytes, arundo, mesquite and desert shrubs. This research showed that high-resolution airborne multispectral and thermal infrared imagery integrated with precise full-waveform lidar data can be used to estimate evapotranspiration and water use by riparian vegetation.
The present investigation titled -Effect of levels of phosphorous and sulphur on growth and yield of Blackgram (Vigna mungo L.
Monitoring Yellowstone National Park's hydrothermal systems and establishing hydrothermal baselines are the main goals of an ongoing collaborative effort between Yellowstone National Park's Geology program and Utah State University's Remote Sensing Services Laboratory. During the first years of this research effort, improvements were made in image acquisition, processing and calibration. In 2007, a broad-band, forward looking infrared (FLIR) camera (8-12 microns) provided reliable airborne images for a hydrothermal baseline of the Hot Spring Basin hydrothermal system. From 2008 to 2011, night-time, airborne thermal infrared image acquisitions during September yielded temperature maps that established the temporal variability of the hydrothermal system. A March 2012 airborne image acquisition provided an initial assessment of seasonal variability. The consistent, high-spatial resolution imagery (~1 m) demonstrates that the technique is robust and repeatable for generating corrected (atmosphere and emissivity) and calibrated temperature maps of the Hot Spring Basin hydrothermal system. Atmospheric conditions before and at flight-time determine the usefulness of the thermal infrared imagery for geohydrologic applications, such as hydrothermal monitoring. Although these ground-surface temperature maps are easily understood, quantification of OPEN ACCESSRemote Sens. 2013, 5 6588 radiative heat from the Hot Spring Basin hydrothermal system is an estimate of the system's total energy output. Area is a key parameter for calculating the hydrothermal system's heat output. Preliminary heat calculations suggest a radiative heat output of ~56 MW to 62 MW for the central Hot Spring Basin hydrothermal system. Challenges still remain in removing the latent solar component within the calibrated, atmospherically adjusted, and emissivity corrected night-time imagery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.