Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.
The diet of humans living in different geographical and climatic regions of the earth varies greatly in both quantity and composition of foods. Evidence is accumulating that indicates that there is a high risk of malnutrition at high altitude because of the usual lack of fresh food and environmental factors. Lack of nutritious diet in the difficult terrain is a potential stressor that elicits oxidative stress. The excretion of minerals from the body is higher in high altitude condition. The altered nutritional requirement can be met to a large extend by regular consumption of locally grown fruits and vegetables. Results of analysis of Seabuckthorn growing in Leh valley of Trans-Himalaya showed the presence of high content of multivitamins including vitamin C (275 mg/100g), vitamin A (432.4 IU/100g), vitamin E (3.54 mg/100g), Riboflavin (1.45 mg/100g), Niacin (68.4 mg/100g), Pantothenic acid (0.85 mcg/100g), vitamin B-6 (1.12 mg/100g), and vitamin B-2 (5.4 mcg/100g). Similarly, mineral elements composition revealed high amount of minerals including potassium (647.2 mg/l), calcium (176.6 mg/l), iron (30.9 mg/l), magnesium (22.5 mg/l), phosphorous (84.2 mg/l), sodium (414.2 mg/l), zinc (1.4 mg/l), copper (0.7 mg/l), manganese (1.06 mg/l) and selenium (0.53 mg/l).
Interaction between inherent antioxidant defence system and various reactive species inside the body has pivotal role in maintaining homeostasis, the fundamental necessity of every living being. Reactive species are by-products of physiological processes, quenched by internal defence line of enzymes, vitamins and other secondary metabolites [1] . These are usually charged moieties of oxygen and nitrogen. Current life style has led to excessive production of these reactive species, mainly due to stress and eating habits [2] . Overproduction of reactive species is the main cause of diseases like cancers, rheumatoid arthritis, atherosclerosis, asthma and diabetes [3] .Antioxidants are usually aromatic compounds, capable of terminating chain reactions via protonation [4] . Antioxidants radicalize themselves to stabilize free radicals. These then stabilize the charge by delocalization of an electron in their aromatic ring [5] . An array of secondary metabolites like phenolics [6] , flavonoids [7] , carotenoids [8] , steroids [9] and thiol compounds [10] act as antioxidants. Antioxidants have found a promising place in food industry [11] , cosmetics,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.