Scientific Targets for Healthy Diets* Food group Food subgroup Reference diet (g/day) Possible ranges (g/day) Whole Grains All grains 232 0 to 60% of energy Tubers/Starchy Vegetables Potatoes, cassava 50 0 to 100 Vegetables All vegetables 300 200 to 600 Fruits All Fruits 200 100 to 300 Dairy Foods Dairy Foods 250 0 to 500 Beef, lamb, pork 14 0 to 28 Protein Sources Chicken, other poultry 29 0 to 58 Eggs 13 0 to 25 Fish 28 0 to 100 Dry beans, lentils, peas 50 0 to 100 Soy 25 0 to 50 Nuts 50 0 to 75 Added fats Unsaturated oils 40 20-80 Added sugars All sweeteners 31 0 to 31 * See Table 1 for a complete list of scientific targets for a 2500 kcal/day healthy reference diet The Commission has integrated, with the quantification of universal healthy diets, global scientific targets for sustainable food systems. The objective is to provide scientific boundaries to reduce environmental degradation arising from food production at all scales. The quantification of scientific targets for the safe operating space of food systems in the world, was done for the key environmental systems and processes where food production plays a dominant role in determining the state of the planet. There is strong scientific evidence that food production is among the largest drivers of global environmental change due to its contributions to greenhouse gas (GHG) emissions, biodiversity loss, freshwater use, eutrophication, and land-system change (as well as chemical pollution, which is not assessed by this Commission). In turn, food production depends upon the continued functioning of these biophysical systems and processes in regulating and maintaining a stable Earth system. These systems and processes thereby provide a necessary set of globally systemic indicators of what constitutes sustainable food production. The Commission concludes that these quantitative scientific targets for sustainable food systems, constitute universal and scalable planetary boundaries for the food system, (Table 2). However, the uncertainty range for these food boundaries remain high, due to the inherent complexity in Earth system dynamics from local ecosystems to the functioning of the biosphere and the climate system. Scientific Targets for Sustainable Food Production Earth system process Control variable Boundary Uncertainty Range Climate change GHG (CH4 and N2O) emissions 5 Gt CO2-eq yr-1 (4.7-5.4 Gt CO2-eq yr-1) Nitrogen cycling N application 90 Tg N yr-1 (65-90 Tg N yr-1) (90-130 Tg N yr-1) Phosphorus cycling P application 8 Tg P yr-1 (6-12 Tg P yr-1) (8-16 Tg P yr-1) Freshwater use Consumptive water use 2,500 km 3 yr-1 (1000-4000 km 3 yr-1) Biodiversity loss Extinction rate 10 E/MSY (1-80 E/MSY) Land-system change Cropland use 13 M km 2 (11-15 M km 2)
Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries.Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution.Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990-2010 time period, with the greatest annualised rate of decline occurring in the 0-9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10-24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the...
SummaryBackgroundThe Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data.MethodsWe estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting.FindingsGlobally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1–4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0–8·4) while the total sum of global YLDs increased from 562 mil...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.