Scientific Targets for Healthy Diets* Food group Food subgroup Reference diet (g/day) Possible ranges (g/day) Whole Grains All grains 232 0 to 60% of energy Tubers/Starchy Vegetables Potatoes, cassava 50 0 to 100 Vegetables All vegetables 300 200 to 600 Fruits All Fruits 200 100 to 300 Dairy Foods Dairy Foods 250 0 to 500 Beef, lamb, pork 14 0 to 28 Protein Sources Chicken, other poultry 29 0 to 58 Eggs 13 0 to 25 Fish 28 0 to 100 Dry beans, lentils, peas 50 0 to 100 Soy 25 0 to 50 Nuts 50 0 to 75 Added fats Unsaturated oils 40 20-80 Added sugars All sweeteners 31 0 to 31 * See Table 1 for a complete list of scientific targets for a 2500 kcal/day healthy reference diet The Commission has integrated, with the quantification of universal healthy diets, global scientific targets for sustainable food systems. The objective is to provide scientific boundaries to reduce environmental degradation arising from food production at all scales. The quantification of scientific targets for the safe operating space of food systems in the world, was done for the key environmental systems and processes where food production plays a dominant role in determining the state of the planet. There is strong scientific evidence that food production is among the largest drivers of global environmental change due to its contributions to greenhouse gas (GHG) emissions, biodiversity loss, freshwater use, eutrophication, and land-system change (as well as chemical pollution, which is not assessed by this Commission). In turn, food production depends upon the continued functioning of these biophysical systems and processes in regulating and maintaining a stable Earth system. These systems and processes thereby provide a necessary set of globally systemic indicators of what constitutes sustainable food production. The Commission concludes that these quantitative scientific targets for sustainable food systems, constitute universal and scalable planetary boundaries for the food system, (Table 2). However, the uncertainty range for these food boundaries remain high, due to the inherent complexity in Earth system dynamics from local ecosystems to the functioning of the biosphere and the climate system. Scientific Targets for Sustainable Food Production Earth system process Control variable Boundary Uncertainty Range Climate change GHG (CH4 and N2O) emissions 5 Gt CO2-eq yr-1 (4.7-5.4 Gt CO2-eq yr-1) Nitrogen cycling N application 90 Tg N yr-1 (65-90 Tg N yr-1) (90-130 Tg N yr-1) Phosphorus cycling P application 8 Tg P yr-1 (6-12 Tg P yr-1) (8-16 Tg P yr-1) Freshwater use Consumptive water use 2,500 km 3 yr-1 (1000-4000 km 3 yr-1) Biodiversity loss Extinction rate 10 E/MSY (1-80 E/MSY) Land-system change Cropland use 13 M km 2 (11-15 M km 2)
The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.
The article presents a study that investigates on the importance of identifying and quantifying planetary boundaries to prevent human activities in affecting environmental condition. The author states the industrial revolution and advancement in human civilization has caused the unstability of the environmental state that is less conducive for humans to live and affect their health condition. The author notes that planetary boundaries served a control variables to secure the safety of its citizen as well as protect the environment from shifting to dangerous levels. It also cites the different planetary boundaries, along with its impact on climate change and Earth system degradation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.