(1 of 11)Two-dimensional (2D) cell cultures have been the primary screening tools to predict drug impacts in vitro for decades. However, owing to the lack of tissuespecific architecture of 2D cultures, secondary screening using three-dimensional (3D) cell culture models is often necessary. A microfluidic approach that facilitates side-by-side 2D and 3D cell culturing in a single microchannel and thus combines the benefits of both set-ups in drug screening; that is, the uniform spatiotemporal distributions of oxygen, nutrients, and metabolic wastes in 2D, and the tissuelike architecture, cell-cell, and cell-extracellular matrix interactions only achieved in 3D. The microfluidic platform is made from an organically modified ceramic material, which is inherently biocompatible and supports cell adhesion (2D culture) and metal adhesion (for integration of impedance electrodes to monitor cell proliferation). To induce 3D spheroid formation on another area, a single-step lithography process is used to fabricate concave microwells, which are made cellrepellant by nanofunctionalization (i.e., plasma porosification and hydrophobic coating). Thanks to the concave shape of the microwells, the spheroids produced on-chip can also be released, with the help of microfluidic flow, for further off-chip characterization after culturing. In this study, the methodology is evaluated for drug cytotoxicity assessment on human hepatocytes.
This work describes aqueous and non-aqueous capillary electrophoresis on thiol-ene-based microfluidic separation devices that feature fully integrated and sharp electrospray ionization (ESI) emitters. The chip fabrication is based on simple and low-cost replica-molding of thiol-ene polymers under standard laboratory conditions. The mechanical rigidity and the stability of the materials against organic solvents, acids and bases could be tuned by adjusting the respective stoichiometric ratio of the thiol and allyl ("ene") monomers, which allowed us to carry out electrophoresis separation in both aqueous and non-aqueous (methanol- and ethanol-based) background electrolytes. The stability of the ESI signal was generally ≤10% RSD for all emitters. The respective migration time repeatabilities in aqueous and non-aqueous background electrolytes were below 3 and 14% RSD (n=4-6, with internal standard). The analytical performance of the developed thiol-ene microdevices was shown in mass spectrometry (MS) based analysis of peptides, proteins, and small molecules. The theoretical plate numbers were the highest (1.2-2.4×10m) in ethanol-based background electrolytes. The ionization efficiency also increased under non-aqueous conditions compared to aqueous background electrolytes. The results show that replica-molding of thiol-enes is a feasible approach for producing ESI microdevices that perform in a stable manner in both aqueous and non-aqueous electrophoresis.
This work describes the fabrication of concave micromirrors to improve the sensitivity of fluorescence imaging, for instance, in single cell analysis. A new approach to fabrication of tunable round (concave) cross-sectional shaped microchannels out of the inorganic-organic hybrid polymer, Ormocomp, single step optical lithography was developed and validated. The concave micromirrors were implemented by depositing and patterning thin films of aluminum on top of the concave microchannels. The round cross-sectional shape was due to residual layer formation, which is inherent to Ormocomp upon UV exposure in the proximity mode. We show that it is possible to control the residual layer thickness and thus the curved shape of the microchannel cross-sectional profile and eventually the focal length of the micromirror, by simply adjusting the UV exposure dose and the distance of the proximity gap (to the photomask). In general, an increase in the exposure dose or in the distance of the proximity gap results in a thicker residual layer and thus an increase in the radius of the microchannel curvature. Under constant exposure conditions, the radius of curvature is almost linearly dependent on the microchannel aspect ratio, i.e., the width (here, 20-200 m) and the depth (here, 15-45m). Depending on the focal length, up to 8-fold signal enhancement over uncoated, round Ormocomp microchannels was achieved in single cell imaging with the help of the converging micromirrors in an epifluorescence microscopy configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.