a b s t r a c tEigenstrains are created as a result of anelastic effects such as defects, temperature changes, bulk growth, etc., and strongly affect the overall response of solids. In this paper, we study the residual stress and deformation fields of an incompressible, isotropic, infinite wedge due to a circumferentially symmetric distribution of finite eigenstrains. In particular, we establish explicit exact solutions for the residual stresses and deformation of a neo-Hookean wedge containing a symmetric inclusion with finite radial and circumferential eigenstrains. In addition, we numerically solve for the residual stress field of a neoHookean wedge induced by a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains.Published by Elsevier Ltd.
In this paper we study the stress and deformation fields generated by nonlinear inclusions with finite eigenstrains in anisotropic solids. In particular, we consider finite eigenstrains in transversely isotropic spherical balls and orthotropic cylindrical bars made of both compressible and incompressible solids. We show that the stress field in a spherical inclusion with uniform pure dilatational eigenstrain in a spherical ball made of an incompressible transversely isotropic solid such that the material preferred direction is radial at any point is uniform and hydrostatic. Similarly, the stress in a cylindrical inclusion contained in an incompressible orthotropic cylindrical bar is uniform hydrostatic if the radial and circumferential eigenstrains are equal and the axial stretch is equal to a value determined by the axial eigenstrain. We also prove that for a compressible isotropic spherical ball and a cylindrical bar containing a spherical and a cylindrical inclusion, respectively, with uniform eigenstrains the stress in the inclusion is uniform (and hydrostatic for the spherical inclusion) if the radial and circumferential eigenstrains are equal. For compressible transversely isotropic and orthotropic solids, we show that the stress field in an inclusion with uniform eigenstrain is not uniform, in general. Nevertheless, in some special cases the material can be designed in order to maintain a uniform stress field in the inclusion. As particular examples to investigate such special cases, we consider compressible Mooney-Rivlin and Blatz-Ko reinforced models and find analytical expressions for the stress field in the inclusion.
In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with distributed line and point defects. In particular, we determine the stress fields of i) a parallel cylindricallysymmetric distribution of screw dislocations in infinite orthotropic and monoclinic media, ii) a cylindricallysymmetric distribution of parallel wedge disclinations in an infinite orthotropic medium, iii) a distribution of edge dislocations in an orthotropic medium, and iv) a spherically-symmetric distribution of point defects in a transversely isotropic spherical ball.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.