In this paper we formulate a geometric theory of nonlinear thermoelasticity that can be used to calculate the time evolution of temperature and thermal stress fields in a nonlinear elastic body. In particular, this formulation can be used to calculate residual thermal stresses. In this theory the material manifold (natural stress-free configuration of the body) is a Riemannian manifold with a temperature-dependent metric. Evolution of the geometry of the material manifold is governed by a generalized heat equation. As examples, we consider an infinitely long circular cylindrical bar with a cylindrically symmetric temperature distribution and a spherical ball with a spherically-symmetric temperature distribution. In both cases we assume that the body is made of an arbitrary incompressible isotropic solid. We numerically solve for the evolution of thermal stress fields induced by thermal inclusions in both a cylindrical bar and a spherical ball, and compare the linear and nonlinear solutions for a generalized neo-Hookean material.
Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time-evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.
a b s t r a c tEigenstrains are created as a result of anelastic effects such as defects, temperature changes, bulk growth, etc., and strongly affect the overall response of solids. In this paper, we study the residual stress and deformation fields of an incompressible, isotropic, infinite wedge due to a circumferentially symmetric distribution of finite eigenstrains. In particular, we establish explicit exact solutions for the residual stresses and deformation of a neo-Hookean wedge containing a symmetric inclusion with finite radial and circumferential eigenstrains. In addition, we numerically solve for the residual stress field of a neoHookean wedge induced by a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains.Published by Elsevier Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.