High-density memory devices are essential to sustain growth in information technology (IT). Furthermore, brain-inspired computing devices are the future of IT businesses such as artificial intelligence, deep learning, and big data. Herein, we propose a facile and hierarchical nickel cobaltite (NCO) quasi-hexagonal nanosheet-based memristive device for multilevel resistive switching (RS) and synaptic learning applications. Electrical measurements of the Pt/NCO/Pt device show the electroforming free pinched hysteresis loops at different voltages, suggesting the multilevel RS capability of the device. The detailed memristive properties of the device were calculated using the time-dependent current–voltage data. The two-valued charge-flux properties indicate the memristive and multilevel RS characteristics of the device. Interestingly, the Pt/NCO/Pt memristive device shows a compliance current (CC)-dependent RS property; compliance-free RS was observed from 10−2 to 10−4 A, and the compliance effect dominated in the range of 10−5–10−6 A. In CC control mode, the device demonstrated three resistance states during endurance and retention measurements. In addition, the device was successful in mimicking biological synaptic properties such as potentiation-depression- and spike-timing-dependent plasticity rules. The results of the present investigation demonstrated that solution-processable NCO nanosheets are potential switching materials for high-density memory and brain-inspired computing applications.
We successfully synthesized a crystalline main chain conjugated copolymer, P(BDBT-co-NDI2T), having BDBT donor-NDI2T acceptor heterojunctions in film states. Interestingly, the polymer exhibited a strong absorption band from 500 to 650...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.