Molecular hydrogen evolution catalysts (HECs) are synthetically tunable and often exhibit high activity, but they are also hampered by stability concerns and practical limitations associated with their use in the homogeneous phase. Their incorporation as integral linker units in metal–organic frameworks (MOFs) can remedy these shortcomings. Moreover, the extended three-dimensional structure of MOFs gives rise to high catalyst loadings per geometric surface area. Herein, we report a new MOF that exclusively consists of cobaloximes, a widely studied HEC, that act as metallo-linkers between hexanuclear zirconium clusters. When grown on conducting substrates and under applied reductive potential, the cobaloxime linkers promote electron transport through the film as well as function as molecular HECs. The obtained turnover numbers are orders of magnitude higher than those of any other comparable cobaloxime system, and the molecular integrity of the cobaloxime catalysts is maintained for at least 18 h of electrocatalysis. Being one of the very few hydrogen evolving electrocatalytic MOFs based on a redox-active metallo-linker, this work explores uncharted terrain for greater catalyst diversity and charge transport pathways.
The electrochemical analysis of molecular catalysts for the conversion of bulk feedstocks into energy-rich clean fuels has seen dramatic advances in the last decade. More recently, increased attention has focused on the characterization of metal-organic frameworks (MOFs) containing well-defined redox and catalytically active sites, with the overall goal to develop structurally stable materials that are industrially relevant for large-scale solar fuel syntheses. Successful electrochemical analysis of such materials draws heavily on well-established homogeneous techniques, yet the nature of solid materials presents additional challenges. In this tutorial-style review, we cover the basics of electrochemical analysis of electroactive MOFs, including considerations of bulk stability, methods of attaching MOFs to electrodes, interpreting fundamental electrochemical data, and finally electrocatalytic kinetic characterization. We conclude with a perspective of some of the prospects and challenges in the field of electrocatalytic MOFs.
The photophysical properties of Cu-deficient Cu0.2In1S x quantum dots synthesized through a facile aqueous-based procedure have been investigated. Transient absorption experiments were carried out probing in the UV–vis, near-IR, and mid-IR regions, with the aim to (i) study the photophysical properties of the quantum dots and (ii) monitor kinetics of electron transfer to a molecular catalyst. When pumping sub-bandgap transitions, negative (bleach) signals were observed that were spectrally and kinetically distinct from those observed with bandgap pump wavelengths. Herein, these distinct contributions are suggested to result from the overlapping bleaching of state filling electrons and trapped holes. Such an interpretation highlights the importance of considering the hole-contributions to the bleach for the proper determination of carrier kinetics in similar systems. A model complex of the [Fe2]-hydrogenase active site was introduced to explore the potential of the quantum dots as photosensitizers for molecular catalysts. The quantum dot photoluminescence was quenched upon catalyst addition, and direct evidence of the singly reduced catalyst was found by transient absorption in the UV–vis and mid-IR. The catalyst accepted reducing equivalents on a subpicosecond time scale upon photoexcitation of the quantum dots, despite no covalent linking chemistry being applied. This implies that charge transfer is not limited by diffusion rates, thus confirming the presence of spontaneous quantum dot and catalyst self-assembly.
Electron transport through metal−organic frameworks by a hopping mechanism between discrete redox active sites is coupled to diffusionmigration of charge-balancing counter cations. Experimentally determined apparent diffusion coefficients, D e app , that characterize this form of charge transport thus contain contributions from both processes. While this is well established for MOFs, microscopic descriptions of this process are largely lacking. Herein, we systematically lay out different scenarios for cation-coupled electron transfer processes that are at the heart of charge diffusion through MOFs. Through systematic variations of solvents and electrolyte cations, it is shown that the D e app for charge migration through a PIZOF-type MOF, Zr(dcphOH-NDI) that is composed of redox-active naphthalenediimide (NDI) linkers, spans over 2 orders of magnitude. More importantly, however, the microscopic mechanisms for cation-coupled electron propagation are contingent on differing factors depending on the size of the cation and its propensity to engage in ion pairs with reduced linkers, either non-specifically or in defined structural arrangements. Based on computations and in agreement with experimental results, we show that ion pairing generally has an adverse effect on cation transport, thereby slowing down charge transport. In Zr(dcphOH-NDI), however, specific cation−linker interactions can open pathways for concerted cation-coupled electron transfer processes that can outcompete limitations from reduced cation flux.
[FeFe] hydrogenase (H 2 ase) enzymes are effective proton reduction catalysts capable of forming molecular dihydrogen with a high turnover frequency at low overpotential. The active sites of these enzymes are buried within the protein structures, and substrates required for hydrogen evolution (both protons and electrons) are shuttled to the active sites through channels from the protein surface. Metal–organic frameworks (MOFs) provide a unique platform for mimicking such enzymes due to their inherent porosity which permits substrate diffusion and their structural tunability which allows for the incorporation of multiple functional linkers. Herein, we describe the preparation and characterization of a redox-active PCN-700-based MOF (PCN = porous coordination network) that features both a biomimetic model of the [FeFe] H 2 ase active site as well as a redox-active linker that acts as an electron mediator, thereby mimicking the function of [4Fe4S] clusters in the enzyme. Rigorous studies on the dual-functionalized MOF by cyclic voltammetry (CV) reveal similarities to the natural system but also important limitations in the MOF-enzyme analogy. Most importantly, and in contrast to the enzyme, restrictions apply to the total concentration of reduced linkers and charge-balancing counter cations that can be accommodated within the MOF. Successive charging of the MOF results in nonideal interactions between linkers and restricted mobility of charge-compensating redox-inactive counterions. Consequently, apparent diffusion coefficients are no longer constant, and expected redox features in the CVs of the materials are absent. Such nonlinear effects may play an important role in MOFs for (electro)catalytic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.