The modification of metal-organic frameworks (MOFs) in a postsynthetic scheme is discussed in this critical review. In this approach, the MOF is assembled and then modified with chemical reagents with preservation of the lattice structure. Recent findings show amide couplings, isocyanate condensations, 'click' chemistry, and other reactions are suitable for postsynthetic modification (PSM). In addition, a number of MOFs, from IRMOF-3 to ZIF-90, are amenable to PSM. The generality of PSM, in both scope of chemical reactions and range of suitable MOFs, clearly indicates that the approach is broadly applicable. Indeed, the rapid increase in reports on PSM demonstrates this methodology will play an increasingly important role in the development of MOFs for the foreseeable future (117 references).
Metal-organic frameworks (MOFs) are an important class of hybrid inorganic-organic materials. In this tutorial review, a progress report on the postsynthetic modification (PSM) of MOFs is provided. PSM refers to the chemical modification of the MOF lattice in a heterogeneous fashion. This powerful synthetic approach has grown in popularity and resulted in a number of advances in the functionalization and application of MOFs. The use of PSM to develop MOFs with improved gas sorption, catalytic activity, bioactivity, and more robust physical properties is discussed. The results reported to date clearly show that PSM is an important approach for the development and advancement of these hybrid solids.
Amino, bromo, nitro, and naphthalene functionalized UiO-66 metal–organic frameworks have been synthesized through reticular chemistry. UiO-66–NH2 is shown to be suitable for postsynthetic modification with a variety of anhydrides to generate new, functionalized frameworks.
Postsynthetic ligand and metal ion exchange (PSE) processes are shown to readily occur in several "inert" metal-organic frameworks (MOFs), including zeolitic imidazolate frameworks (ZIFs). Ligand exchange can occur between solid samples, as was demonstrated under relatively mild conditions with two robust, topologically distinct MOFs, MIL-53(Al) and MIL-68(In). Interestingly, ligand PSE is not observed with MIL-101(Cr), which is attributed to the kinetic inertness of the Cr(III) ion. In addition to ligand exchange, metal ion (cation) PSE was also studied between intact MOF microcrystalline particles. Metal ion transfer between MIL-53(Al) and MIL-53(Fe) was readily observed. These PSE reactions were monitored and the products characterized by a number of techniques, including aerosol time-of-flight mass spectrometry, which permits single-particle compositional analysis. To show the potential synthetic utility of this approach, the PSE process was used to prepare the first Ti(IV) analogue of the robust UiO-66(Zr) framework. Finally, experiments to rule out mechanisms other than PSE (i.e., aggregation, dissolution/recrystallization) were performed. The results demonstrate that PSE, of either ligands or cations, is common even with highly robust MOFs such as UiO-66(Zr), MILs, and ZIFs. Furthermore, it is shown that PSE is useful in preparing novel materials that cannot be obtained via other synthetic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.