UV radiation creates excited states in DNA that lead to mutagenic photoproducts. Photoexcitation of single-stranded DNA can transfer an electron between stacked bases, but the fate of excited states in the double helix has been intensely debated. Here, photoinduced interstrand proton transfer (PT) triggered by intrastrand electron transfer (ET) is detected for the first time by time-resolved vibrational spectroscopy and quantum mechanical calculations. Long-lived excited states are shown to be oppositely charged base pair radical ions. In two of the duplexes, the base pair radical anions are present as tautomers formed by interstrand PT. Charge recombination occurs on the picosecond time scale preventing the accumulation of damaging radicals or mutagenic tautomers.
Photophysical investigations of the canonical nucleobases that make up DNA and RNA during the past 15 years have revealed that excited states formed by the absorption of UV radiation decay with subpicosecond lifetimes (i.e., <10(-12) s). Ultrashort lifetimes are a general property of absorbing sunscreen molecules, suggesting that the nucleobases are molecular survivors of a harsh UV environment. Encoding the genome using photostable building blocks is an elegant solution to the threat of photochemical damage. Ultrafast excited-state deactivation strongly supports the hypothesis that UV radiation played a major role in shaping molecular inventories on the early Earth before the emergence of life and the subsequent development of a protective ozone shield. Here, we review the general physical and chemical principles that underlie the photostability, or "UV hardiness", of modern nucleic acids and discuss the possible implications of these findings for prebiotic chemical evolution. In RNA and DNA strands, much longer-lived excited states are observed, which at first glance appear to increase the risk of photochemistry. It is proposed that the dramatically different photoproperties that emerge from assemblies of photostable building blocks may explain the transition from a world of molecular survival to a world in which energy-rich excited electronic states were eventually tamed for biological purposes such as energy transduction, signaling, and repair of the genetic machinery.
During the early evolution of life, 8-oxo-7,8-dihydro-2′-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer wavelength UVB radiation. To investigate the ability of O to act as an excited-state electron donor, a dinucleotide mimic of the FADH 2 cofactor containing O at the 5′-end and 2′-deoxyadenosine at the 3′-end was studied by femtosecond transient absorption spectroscopy in aqueous solution. Following excitation with a UV pulse, a broadband mid-IR pulse probed vibrational modes of ground-state and electronically excited molecules in the double-bond stretching region. Global analysis of timeand frequency-resolved transient absorption data coupled with ab initio quantum mechanical calculations reveal vibrational marker bands of nucleobase radical ions formed by electron transfer from O to 2′-deoxyadenosine. The quantum yield of charge separation is 0.4 at 265 nm, but decreases to 0.1 at 295 nm. Charge recombination occurs in 60 ps before the O radical cation can lose a deuteron to water. Kinetic and thermodynamic considerations strongly suggest that all nucleobases can undergo ultrafast charge separation when π-stacked in DNA or RNA. Interbase charge transfer is proposed to be a major decay pathway for UV excited states of nucleic acids of great importance for photostability as well as photoredox activity.DNA photophysics | time-resolved vibrational spectroscopy | DNA charge transfer states | ab initio calculations | photoreactivation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.