The objective of this work is to develop and apply a spectral graph theoretic approach for differentiating between (classifying) additive manufactured (AM) parts contingent on the severity of their dimensional variation from laser-scanned coordinate measurements (3D point cloud). The novelty of the approach is in invoking spectral graph Laplacian eigenvalues as an extracted feature from the laser-scanned 3D point cloud data in conjunction with various machine learning techniques. The outcome is a new method that classifies the dimensional variation of an AM part by sampling less than 5% of the 2 million 3D point cloud data acquired (per part). This is a practically important result, because it reduces the measurement burden for postprocess quality assurance in AM—parts can be laser-scanned and their dimensional variation quickly assessed on the shop floor. To realize the research objective, the procedure is as follows. Test parts are made using the fused filament fabrication (FFF) polymer AM process. The FFF process conditions are varied per a phased design of experiments plan to produce parts with distinctive dimensional variations. Subsequently, each test part is laser scanned and 3D point cloud data are acquired. To classify the dimensional variation among parts, Laplacian eigenvalues are extracted from the 3D point cloud data and used as features within different machine learning approaches. Six machine learning approaches are juxtaposed: sparse representation, k-nearest neighbors, neural network, naïve Bayes, support vector machine, and decision tree. Of these, the sparse representation technique provides the highest classification accuracy (F-score > 97%).
This work proposes a novel approach for geometric integrity assessment of additive manufactured (AM, 3D printed) components, exemplified by acrylonitrile butadiene styrene (ABS) polymer parts made using fused filament fabrication (FFF) process. The following two research questions are addressed in this paper: (1) what is the effect of FFF process parameters, specifically, infill percentage (If) and extrusion temperature (Te) on geometric integrity of ABS parts?; and (2) what approach is required to differentiate AM parts with respect to their geometric integrity based on sparse sampling from a large (∼ 2 million data points) laser-scanned point cloud dataset? To answer the first question, ABS parts are produced by varying two FFF parameters, namely, infill percentage (If) and extrusion temperature (Te) through design of experiments. The part geometric integrity is assessed with respect to key geometric dimensioning and tolerancing (GD&T) features, such as flatness, circularity, cylindricity, root mean square deviation, and in-tolerance percentage. These GD&T parameters are obtained by laser scanning of the FFF parts. Concurrently, coordinate measurements of the part geometry in the form of 3D point cloud data is also acquired. Through response surface statistical analysis of this experimental data it was found that discrimination of geometric integrity between FFF parts based on GD&T parameters and process inputs alone was unsatisfactory (regression R2 < 50%). This directly motivates the second question. Accordingly, a data-driven analytical approach is proposed to classify the geometric integrity of FFF parts using minimal number (< 2% of total) of laser-scanned 3D point cloud data. The approach uses spectral graph theoretic Laplacian eigenvalues extracted from the 3D point cloud data in conjunction with a modeling framework called sparse representation to classify FFF part quality contingent on the geometric integrity. The practical outcome of this work is a method that can quickly classify the part geometric integrity with minimal point cloud data and high classification fidelity (F-score > 95%), which bypasses tedious coordinate measurement.
In the hot and humid environment of Indian summers, a conventional cooling system is too expensive for most people. In this project, Passive cooling systems which consume less power, are more efficient, cost less, and make very little noise are used. After researching various passive cooling techniques in isolation and running simultaneously, we aim to develop a system that is cost-effective and efficient at cooling the Indian household. The focus of this project is on the four major types of passive cooling techniques, they are radiant cooling, solar chimneys, wind catchers, and shading devices. Supplementary techniques like terrace cooling are also included. The initial analysis and study of the windcatcher system with various heights and inlet shapes have been conducted. A software model has been generated using fusion 360, analyzed in Ansys fluent, and results were recorded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.