Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
2020. Reproductive maturity and cone abundance vary with tree size and stand basal area for two widely distributed conifers. Ecosphere 11(5):Abstract. Understanding potential limitations to tree regeneration is essential as rates of tree mortality increase in response to direct (extreme drought) and indirect (bark beetle outbreaks, wildfire) effects of a warming climate. Seed availability is increasingly recognized as an important limitation for tree regeneration. High variability in seed cone production is a trait common among many northern temperate conifers, but few studies examine the determinants of individual tree cone production and how they vary with stand structure. In subalpine forests in the southern Rocky Mountains, USA, we monitored >1600 Picea engelmannii (Engelmann spruce) and Abies lasiocarpa (subalpine fir) trees for cone presence (an indicator of reproductive maturity) and a subset of those trees for cone abundance (an indicator of seed production) from 2016 to 2018. We constructed mixed models to test how individual tree cone presence and cone abundance were affected by tree size and age as well as forest attributes at the neighborhood-and stand-scales. The probability of cone presence and cone abundance increased with tree size and age for A. lasiocarpa and P. engelmannii. The youngest ages of trees with cones present were more than 100 yr later for individuals in high basal area (BA) stands (>65 m 2 /ha) relative to low BA stands (<25 m 2 /ha). P. engelmannii produced many more cones than A. lasiocarpa at similar sizes, especially in young, low BA stands. Our findings reveal how differences in tree sizes and stand structures typically associated with time since last disturbance can affect seed production patterns for decades to well over a century. The consistent regional pattern of earlier and more abundant postfire establishment of P. engelmannnii vs. the delayed postfire establishment by A. lasiocarpa may be partially explained by species' differences in cone abundance by stand structure. The increasing loss of large, dominant cone-producing trees will significantly reduce seed production to support future tree regeneration and maintain forest cover. However, seed availability and resilience following disturbances may be less limiting than expected for species like P. engelmannii that have the capacity to produce more cones in open-canopy forests, such as recently disturbed areas.
1. Amplified by warming temperatures and drought, recent outbreaks of native bark beetles (Curculionidae: Scolytinae) have caused extensive tree mortality throughout Europe and North America. Despite their ubiquitous nature and important effects on ecosystems, forest recovery following such disturbances is poorly understood, particularly across regions with varying abiotic conditions and outbreak effects. 2. To better understand post-outbreak recovery across a topographically complex region, we synthesized data from 16 field studies spanning subalpine forests in the Southern Rocky Mountains, USA. From 1997 to 2019, these forests were heavily affected by outbreaks of three native bark beetle species (Dendroctonus ponderosae, Dendroctonus rufipennis and Dryocoetes confusus). We compared pre-and post-outbreak forest conditions and developed region-wide predictive maps of post-outbreak (1) live basal areas, (2) juvenile densities and (3) height
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.