We present a conceptual model in which plant-soil interactions in grasslands are characterized by the extent to which water is limiting. Plant-soil interactions in dry grasslands, those dominated by water limitation ('belowground-dominance'), are fundamentally different from plant-soil interactions in subhumid grasslands, where resource limitations vary in time and space among water, nitrogen, and light ('indeterminate dominance'). In the belowgrounddominance grasslands, the strong limitation of soil water leads to complete (though uneven) occupation of the soil by roots, but insufficient resources to support continuous aboveground plant cover. Discontinuous aboveground plant cover leads to strong biological and physical forces that result in the accumulation of soil materials beneath individual plants in resource islands. The degree of accumulation in these resource islands is strongly influenced by p!ant functional type (lifespan, growth form, root:shoot ratio, photosynthetic pathway), with the largest resource islands accumulating under perennial bunch grasses. Resource islands develop over decadal time scales, but may be reduced to the level of bare ground following death of an individual plant in as little as 3 years. These resource islands may have a great deal of significance as an index of recovery from disturbance, an indicator of ecosystem stability or harbinger of desertification, or may be significant because of possible feedbacks to plant establishment. In the grasslands in which the dominant resource limiting plant community dynamics is indeterminate, plant cover is relatively continuous, and thus the major force in plant-soil interactions is related to the feedbacks among plant biomass production, litter quality and nutrient availability. With increasing precipitation, the over-riding importance of water as a limiting factor diminishes, and four other factors become important in determining plant community and ecosystem dynamics: soil nitrogen, herbivory, fire, and light. Thus, several different strategies for competing for resources are present in this portion of the gradient. These strategies are represented by different plant traits, for example root:shoot allocation, height and photosynthetic pathway type (C3 vs. C4) and nitrogen fixation, each of which has a different influence on litter quality and thus nutrient availability. Recent work has indicated 122 that there are strong feedbacks between plant community structure, diversity, and soil attributes including nitrogen availability and carbon storage. Across both types of grasslands, there is strong evidence that human forces that alter plant community structure, such as invasions by nonnative annual plants or changes in grazing or fire regime, alters the pattern, quantity, and quality of soil organic matter in grassland ecosystems. The reverse influence of soils on plant communities is also strong; in tum, alterations of soil nutrient supply in grasslands can have major influences on plant species composition, plant diversity, and primary p...
Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over‐allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain‐on‐snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.
Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
BackgroundWhile freshwater sustainability is generally defined as the provisioning of water for both people and the environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the southwestern United States that evaluates the potential impact of future population growth and water demand on streamflow depletion across multiple watersheds.Methodology/Principal FindingsWe modeled population growth and water demand through 2050 and used four scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers from being dewatered.Conclusions/SignificanceThe window of opportunity to implement water management strategies is narrowing. Because impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management strategies should be implemented where groundwater will be used to support new municipal demand. Our approach provides a low-cost method to identify where alternative water and growth management strategies may have the most impact, and demonstrates that such strategies can maintain a continued water supply for both people and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.