Models are commonly used to identify lands that will best maintain the ability of wildlife to move between wildland blocks through matrix lands after the remaining matrix has become incompatible with wildlife movement. We offer a roadmap of 16 choices and assumptions that arise in designing linkages to facilitate movement or gene flow of focal species between 2 or more predefined wildland blocks. We recommend designing linkages to serve multiple (rather than one) focal species likely to serve as a collective umbrella for all native species and ecological processes, explicitly acknowledging untested assumptions, and using uncertainty analysis to illustrate potential effects of model uncertainty. Such uncertainty is best displayed to stakeholders as maps of modeled linkages under different assumptions. We also recommend modeling corridor dwellers (species that require more than one generation to move their genes between wildland blocks) differently from passage species (for which an individual can move between wildland blocks within a few weeks). We identify a problem, which we call the subjective translation problem, that arises because the analyst must subjectively decide how to translate measurements of resource selection into resistance. This problem can be overcome by estimating resistance from observations of animal movement, genetic distances, or interpatch movements. There is room for substantial improvement in the procedures used to design linkages robust to climate change and in tools that allow stakeholders to compare an optimal linkage design to alternative designs that minimize costs or achieve other conservation goals.
Least-cost models for focal species are widely used to design wildlife corridors. To evaluate the least-cost modeling approach used to develop 15 linkage designs in southern California, USA, we assessed robustness of the largest and least constrained linkage. Species experts parameterized models for eight species with weights for four habitat factors (land cover, topographic position, elevation, road density) and resistance values for each class within a factor (e.g., each class of land cover). Each model produced a proposed corridor for that species. We examined the extent to which uncertainty in factor weights and class resistance values affected two key conservation-relevant outputs, namely, the location and modeled resistance to movement of each proposed corridor. To do so, we compared the proposed corridor to 13 alternative corridors created with parameter sets that spanned the plausible ranges of biological uncertainty in these parameters. Models for five species were highly robust (mean overlap 88%, little or no increase in resistance). Although the proposed corridors for the other three focal species overlapped as little as 0% (mean 58%) of the alternative corridors, resistance in the proposed corridors for these three species was rarely higher than resistance in the alternative corridors (mean difference was 0.025 on a scale of 1 10; worst difference was 0.39). As long as the model had the correct rank order of resistance values and factor weights, our results suggest that the predicted corridor is robust to uncertainty. The three carnivore focal species, alone or in combination, were not effective umbrellas for the other focal species. The carnivore corridors failed to overlap the predicted corridors of most other focal species and provided relatively high resistance for the other focal species (mean increase of 2.7 resistance units). Least-cost modelers should conduct uncertainty analysis so that decision-makers can appreciate the potential impact of model uncertainty on conservation decisions. Our approach to uncertainty analysis (which can be called a worst-case scenario approach) is appropriate for complex models in which distribution of the input parameters cannot be specified.
BackgroundWhile freshwater sustainability is generally defined as the provisioning of water for both people and the environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the southwestern United States that evaluates the potential impact of future population growth and water demand on streamflow depletion across multiple watersheds.Methodology/Principal FindingsWe modeled population growth and water demand through 2050 and used four scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers from being dewatered.Conclusions/SignificanceThe window of opportunity to implement water management strategies is narrowing. Because impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management strategies should be implemented where groundwater will be used to support new municipal demand. Our approach provides a low-cost method to identify where alternative water and growth management strategies may have the most impact, and demonstrates that such strategies can maintain a continued water supply for both people and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.