The relationship between charge-carrier lifetime and the tolerance of lead halide perovskite (LHP) solar cells to intrinsic point defects has drawn much attention by helping to explain rapid improvements in device efficiencies. However, little is known about how charge-carrier lifetime and solar cell performance in LHPs are affected by extrinsic defects (i.e., impurities), including those that are common in manufacturing environments and known to introduce deep levels in other semiconductors. Here, we evaluate the tolerance of LHP solar cells to iron introduced via intentional contamination of the feedstock and examine the root causes of the resulting efficiency losses. We find that comparable efficiency losses occur in LHPs at feedstock iron concentrations approximately 100 times higher than those in p-type silicon devices. Photoluminescence measurements correlate iron concentration with nonradiative recombination, which we attribute to the presence of deep-level iron interstitials, as calculated from first-principles, as well as iron-rich particles detected by synchrotron-based X-ray fluorescence microscopy. At moderate contamination levels, we witness prominent recovery of device efficiencies to near-baseline values after biasing at 1.4 V for 60 s in the dark. We theorize that this temporary effect arises from improved charge-carrier collection enhanced by electric fields strengthened from ion migration toward interfaces. Our results demonstrate that extrinsic defect tolerance contributes to high efficiencies in LHP solar cells, which inspires further investigation into potential large-scale manufacturing cost savings as well as the degree of overlap between intrinsic and extrinsic defect tolerance in LHPs and "perovskite-inspired" lead-free stable alternatives.
The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl 3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density N peak ¼ 8.0 Â 10 18 cm À3 and a junction depth d j ¼ 0.4 lm, resulting in a sheet resistivity q sh ¼ 380 X/sq and a saturation current-density J 0 below 10 fA/cm 2 . With these properties, the POCl 3 process can compete with ion implantation or doped oxide approaches. Published by AIP Publishing. [http://dx.
The root cause of light- and elevated temperature-induced degradation (LeTID) in multicrystalline silicon p-type passivated emitter and rear cell (PERC) devices is still unknown. Microwave-induced remote hydrogen plasma (MIRHP) is employed to vary the concentration of bulk hydrogen and to separate the effects of hydrogen and firing temperature in LeTID-affected wafers. We find that hydrogen is required for degradation to occur, and that samples fired prior to the introduction of hydrogen do not degrade. Importantly, samples with hydrogen that have not been fired do degrade, implying that the firing time-temperature profile does not cause LeTID. Together, these results suggest that the LeTID defect reaction consists of at least two reactants: hydrogen and one or more defects that can be separately modified by high-temperature firing. We assess the leading hypotheses for LeTID in the context of our new understanding of the necessary reactants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.