Widespread drug resistance due to empiric use of broad-spectrum antibiotics has stimulated development of bacteria-specific strategies for prophylaxis and therapy based on modern monoclonal antibody (mAb) technologies. However, single-mechanism mAb approaches have not provided adequate protective activity in the clinic. We constructed multifunctional bispecific antibodies, each conferring three mechanisms of action against the bacterial pathogen Pseudomonas aeruginosa by targeting the serotype-independent type III secretion system (injectisome) virulence factor PcrV and persistence factor Psl exopolysaccharide. A new bispecific antibody platform, BiS4, exhibited superior synergistic protection against P. aeruginosa-induced murine pneumonia compared to parent mAb combinations or other available bispecific antibody structures. BiS4αPa was protective in several mouse infection models against disparate P. aeruginosa strains and unexpectedly further synergized with multiple antibiotic classes even against drug-resistant clinical isolates. In addition to resulting in a multimechanistic clinical candidate (MEDI3902) for the prevention or treatment of P. aeruginosa infections, these antibody studies suggest that multifunctional antibody approaches may be a promising platform for targeting other antibiotic-resistant bacterial pathogens.
A human antibody facilitates opsonophagocytic killing, inhibits attachment of Pseudomonas aeruginosa, and exerts protective effects in several animal models of P. aeruginosa infection.
Alpha-toxin (AT) is a major virulence factor in the disease pathogenesis of Staphylococcus aureus. We previously identified a monoclonal antibody (MAb) against AT that reduced disease severity in a mouse dermonecrosis model. Here, we evaluate the activity of an affinity-optimized variant, LC10, in a mouse model of S. aureus pneumonia. Passive immunization with LC10 increased survival and reduced bacterial numbers in the lungs and kidneys of infected mice and showed protection against diverse S. aureus clinical isolates. The lungs of S. aureus-infected mice exhibited bacterial pneumonia, including widespread inflammation, whereas the lungs of mice that received LC10 exhibited minimal inflammation and retained healthy architecture. Consistent with reduced immune cell infiltration, LC10-treated animals had significantly lower (P < 0.05) proinflammatory cytokine and chemokine levels in the bronchoalveolar lavage fluid than did those of the control animals. This reduction in inflammation and damage to the LC10-treated animals resulted in reduced vascular protein leakage and CO 2 levels in the blood. LC10 was also assessed for its therapeutic activity in combination with vancomycin or linezolid. Treatment with a combination of LC10 and vancomycin or linezolid resulted in a significant increase (P < 0.05) in survival relative to the monotherapies and was deemed additive to synergistic by isobologram analysis. Consistent with improved survival, the lungs of animals treated with antibiotic plus LC10 exhibited less inflammatory tissue damage than those that received monotherapy. These data provide insight into the mechanisms of protection provided by AT inhibition and support AT as a promising target for immunoprophylaxis or adjunctive therapy against S. aureus pneumonia.
Highlights d AMs patrol and clean the alveolar spaces d AMs have directed movement toward inhaled bacteria d AM migration is crucial for bacterial clearance d AM migration is impaired during viral infection
Highlights d P. aeruginosa keratitis infections result in biofilm formation on the cornea d NETs form at the base of the biofilm, triggered by the type-3 secretion system (T3SS) d NETs stop bacterial dissemination into the brain but promote antibiotic resistance d Blocking exopolysaccharide Psl and the T3SS allowed neutrophils to break down the biofilm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.