A simple, portable electrochemical surface-enhanced Raman spectroscopy (SERS) system is reported, consisting of a small benchtop Raman spectrometer, a laptop computer, and a portable USB potentiostat. Screen printed electrodes modified with silver colloidal nanoparticles are used as the SERS-active electrode, which exhibit long-term stability once prepared. Spectroelectrochemical analyses of para-aminothiophenol and melamine as model systems was conducted. In both cases, an increase in SERS signal is observed upon modulation of the applied voltage, indicating an inherent benefit of such a system wherein the surface charge can be easily tuned. Given the low cost, rapid analysis time, and good sensitivity of this system, this simple setup could be implemented for many on-site sensing applications, ranging from food and drug analysis to environmental monitoring and to chemical and biological warfare agent detection.
An increased level of uric acid in urine and plasma is indicative of the development of preeclampsia, a hypertensive disorder that can occur during pregnancy. The preliminary steps towards developing a rapid tool for early diagnosis of preeclampsia using electrochemical SERS (E-SERS) for the detection of uric acid in urine are presented herein. Characterization of the uric acid species was completed using cyclic voltammetry, UV spectroscopy, Raman spectroscopy and electrochemical surface-enhanced Raman spectroscopy (E-SERS). E-SERS was capable of easily detecting uric acid directly at concentrations <1 mM in urine simulant, without the need for costly enzymes and bulky equipment, and thus demonstrates promise as a rapid point-of-care diagnostic tool for detection of early onset preeclampsia in developing nation settings.
The demand for methods and technologies capable of rapid, inexpensive and continuous monitoring of health status or exposure to environmental pollutants persists. In this work, the development of novel surface-enhanced Raman spectroscopy (SERS) substrates from metal-coated silk fabric, known as zari, presents the potential for SERS substrates to be incorporated into clothing and other textiles for the routine monitoring of important analytes, such as disease biomarkers or environmental pollutants. Characterization of the zari fabric was completed using scanning electron microscopy, energy dispersive X-ray analysis and Raman spectroscopy. Silver nanoparticles (AgNPs) were prepared, characterized by transmission electron microscopy and UV-vis spectroscopy, and used to treat fabric samples by incubation, drop-coating and in situ synthesis. The quality of the treated fabric was evaluated by collecting the SERS signal of 4,4'-bipyridine on these substrates. When AgNPs were drop-coated on the fabric, sensitive and reproducible substrates were obtained. Adenine was selected as a second probe molecule, because it dominates the SERS signal of DNA, which is an important class of disease biomarker, particularly for pathogens such as Plasmodium spp. and Mycobacterium tuberculosis. Excellent signal enhancement could be achieved on these affordable substrates, suggesting that the developed fabric chips have the potential for expanding the use of SERS as a diagnostic and environmental monitoring tool for application in wearable sensor technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.