PCR-ribotyping has been adopted in many laboratories as the method of choice for C. difficile typing and surveillance. However, issues with the conventional agarose gel-based technique, including inter-laboratory variation and interpretation of banding patterns have impeded progress. The method has recently been adapted to incorporate high-resolution capillary gel-based electrophoresis (CE-ribotyping), so improving discrimination, accuracy and reproducibility. However, reports to date have all represented single-centre studies and inter-laboratory variability has not been formally measured or assessed. Here, we achieved in a multi-centre setting a high level of reproducibility, accuracy and portability associated with a consensus CE-ribotyping protocol. Local databases were built at four participating laboratories using a distributed set of 70 known PCR-ribotypes. A panel of 50 isolates and 60 electronic profiles (blinded and randomized) were distributed to each testing centre for PCR-ribotype identification based on local databases generated using the standard set of 70 PCR-ribotypes, and the performance of the consensus protocol assessed. A maximum standard deviation of only ±3.8bp was recorded in individual fragment sizes, and PCR-ribotypes from 98.2% of anonymised strains were successfully discriminated across four ribotyping centres spanning Europe and North America (98.8% after analysing discrepancies). Consensus CE-ribotyping increases comparability of typing data between centres and thereby facilitates the rapid and accurate transfer of standardized typing data to support future national and international C. difficile surveillance programs.
House mice (Mus musculus) thrive in large urban centers worldwide. Nonetheless, little is known about the role that they may play in contributing to environmental contamination with potentially pathogenic bacteria. Here, we describe the fecal microbiome of house mice with emphasis on detection of pathogenic bacteria and antimicrobial resistance genes by molecular methods. Four hundred sixteen mice were collected from predominantly residential buildings in seven sites across New York City over a period of 13 months. 16S rRNA sequencing identified Bacteroidetes as dominant and revealed high levels of Proteobacteria. A targeted PCR screen of 11 bacteria, as indicated by 16S rRNA analyses, found that mice are carriers of several gastrointestinal disease-causing agents, including Shigella, Salmonella, Clostridium difficile, and diarrheagenic Escherichia coli. Furthermore, genes mediating antimicrobial resistance to fluoroquinolones (qnrB) and β-lactam drugs (blaSHV and blaACT/MIR) were widely distributed. Culture and molecular strain typing of C. difficile revealed that mice harbor ribotypes associated with human disease, and screening of kidney samples demonstrated genetic evidence of pathogenic Leptospira species. In concert, these findings support the need for further research into the role of house mice as potential reservoirs for human pathogens and antimicrobial resistance in the built environment.
Background Few data suggest that Clostridioides difficile infections (CDIs) detected by toxin enzyme immunoassay (EIA) are more severe and have worse outcomes than those detected by nucleic acid amplification tests (NAATs) only. We compared toxin- positive and NAAT-positive-only CDI across geographically diverse sites. Methods A case was defined as a positive C. difficile test in a person ≥1 year old with no positive tests in the prior 8 weeks. Cases were detected during 2014–2015 by a testing algorithm (specimens initially tested by glutamate dehydrogenase and toxin EIA; if discordant results, specimens were reflexed to NAAT) and classified as toxin positive or NAAT positive only. Medical charts were reviewed. Multivariable logistic regression models were used to compare CDI-related complications, recurrence, and 30-day mortality between the 2 groups. Results Of 4878 cases, 2160 (44.3%) were toxin positive and 2718 (55.7%) were NAAT positive only. More toxin-positive than NAAT-positive-only cases were aged ≥65 years (48.2% vs 38.0%; P < .0001), had ≥3 unformed stools for ≥1 day (43.9% vs 36.6%; P < .0001), and had white blood cell counts ≥15 000 cells/µL (31.4% vs 21.4%; P < .0001). In multivariable analysis, toxin positivity was associated with recurrence (adjusted odds ratio [aOR], 1.89; 95% confidence interval [CI], 1.61–2.23), but not with CDI-related complications (aOR, 0.91; 95% CI, .67–1.23) or 30-day mortality (aOR, 0.95; 95% CI, .73–1.24). Conclusions Toxin-positive CDI is more severe, but there were no differences in adjusted CDI-related complication and mortality rates between toxin-positive and NAAT-positive-only CDI that were detected by an algorithm that utilized an initial glutamate dehydrogenase screening test.
Background To estimate the infectious period of SARS-CoV-2 in older adults with underlying conditions, we assessed duration of COVID-19 symptoms, reverse-transcription polymerase chain reaction (RT-PCR) positivity, and culture positivity among nursing home residents. Methods We enrolled residents within 15 days of their first positive SARS-CoV-2 test (diagnosis) at an Arkansas facility from July 7–15, 2020 and followed them for 42 days. Every 3 days for 21 days and then weekly, we assessed COVID-19 symptoms, collected specimens (oropharyngeal, anterior nares, and saliva), and reviewed medical charts. Blood for serology was collected on days 0, 6, 12, 21, and 42. Infectivity was defined by positive culture. Duration of culture positivity was compared to duration of COVID-19 symptoms and RT-PCR positivity. Data were summarized using measures of central tendency, frequencies and proportions. Results We enrolled 17/39 (44%) eligible residents. Median participant age was 82 years (range: 58–97 years). All had ≥3 underlying conditions. Median duration of RT-PCR positivity was 22 days (interquartile range [IQR]: 8–31 days) from diagnosis; median duration of symptoms was 42 days (IQR: 28–49 days). Of nine (53%) participants with any culture-positive specimens, 1 (11%) severely immunocompromised participant remained culture-positive 19 days from diagnosis; 8/9 (89%) were culture-positive ≤8 days from diagnosis. Seroconversion occurred in 12/12 (100%) surviving participants with ≥1 blood specimen; all participants were culture-negative before seroconversion. Conclusion Duration of infectivity was considerably shorter than duration of symptoms and RT-PCR positivity. Severe immunocompromise may prolong SARS-CoV-2 infectivity. Seroconversion indicated non-infectivity in this cohort.
Background Antimicrobial susceptibility testing (AST) is not routinely performed for Clostridioides difficile and data evaluating minimum inhibitory concentrations (MICs) are limited. We performed AST and whole genome sequencing (WGS) for 593 C. difficile isolates collected between 2012-2017 through the Centers for Disease Control and Prevention’s Emerging Infections Program. Methods MICs to six antimicrobial agents (ceftriaxone, clindamycin, meropenem, metronidazole, moxifloxacin, and vancomycin) were determined using the reference agar dilution method according to Clinical and Laboratory Standards Institute guidelines. WGS was performed on all isolates to detect the presence of genes or mutations previously associated with resistance. Results Among all isolates, 98.5% displayed a vancomycin MIC ≤ 2 μg/mL and 97.3% displayed a metronidazole MIC ≤ 2 μg/mL. Ribotype 027 (RT027) isolates displayed higher vancomycin MICs (MIC50: 2 μg/mL; MIC90: 2 μg/mL) than non-RT027 isolates (MIC50: 0.5 μg/mL; MIC90: 1 μg/mL) (P < 0.01). No vanA/B genes were detected. RT027 isolates also showed higher MICs to clindamycin and moxifloxacin and were more likely to harbor associated resistance genes or mutations. Conclusions Elevated MICs to antibiotics used for treatment of C. difficile infection were rare and there was no increase in MICs over time. The lack of vanA/B genes or mutations consistently associated with elevated vancomycin MICs suggests there are multifactorial mechanisms of resistance. Ongoing surveillance of C. difficile using reference AST and WGS to monitor MIC trends and the presence of antibiotic resistance mechanisms is essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.