Heart rate variability (HRV) is traditionally derived from RR interval time series of electrocardiography (ECG). Photoplethysmography (PPG) also reflects the cardiac rhythm since the mechanical activity of the heart is coupled to its electrical activity. Thus, theoretically, PPG can be used for determining the interval between successive heartbeats and heart rate variability. However, the PPG wave lags behind the ECG signal by the time required for transmission of pulse wave. In this study, finger-tip PPG and standard lead II ECG were recorded for five minutes from 10 healthy subjects at rest. The results showed a high correlation (median = 0.97) between the ECG-derived RR intervals and PPG-derived peak-to-peak (PP) intervals. PP variability was accurate (0.1 ms) as compared to RR variability. The time domain, frequency domain and Poincaré plot HRV parameters computed using RR interval method and PP interval method showed no significant differences (p < 0.05). The error analysis also showed insignificant differences between the HRV indices obtained by the two methods. Bland-Altman analysis showed high degree of agreement between the two methods for all the parameters of HRV. Thus, HRV can also be reliably estimated from the PPG based PP interval method.
Results suggests that PTT response reflects the myogenic components in the early part of RH and PPG amplitude response reflects the metabolic component reinforcing the later course of RH. PPG amplitude and PTT can be used to quantify the changes in diameter and tone of the vessel wall, respectively during RH. The collective responses of PPG amplitude and PTT can be more appropriate to facilitate PPG technique for monitoring of vasodilation caused by RH.
The staged approach to the management of severe, rigid scoliosis helps get an excellent correction. Anterior release loosens up the rigid apex and provides with nearly 30% correction so that the extent of the osteotomies in the second stage from the back is substantially reduced, allowing for a final good correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.