Heart rate variability (HRV) is traditionally derived from RR interval time series of electrocardiography (ECG). Photoplethysmography (PPG) also reflects the cardiac rhythm since the mechanical activity of the heart is coupled to its electrical activity. Thus, theoretically, PPG can be used for determining the interval between successive heartbeats and heart rate variability. However, the PPG wave lags behind the ECG signal by the time required for transmission of pulse wave. In this study, finger-tip PPG and standard lead II ECG were recorded for five minutes from 10 healthy subjects at rest. The results showed a high correlation (median = 0.97) between the ECG-derived RR intervals and PPG-derived peak-to-peak (PP) intervals. PP variability was accurate (0.1 ms) as compared to RR variability. The time domain, frequency domain and Poincaré plot HRV parameters computed using RR interval method and PP interval method showed no significant differences (p < 0.05). The error analysis also showed insignificant differences between the HRV indices obtained by the two methods. Bland-Altman analysis showed high degree of agreement between the two methods for all the parameters of HRV. Thus, HRV can also be reliably estimated from the PPG based PP interval method.
Depression is a mental disorder characterized by persistent occurrences of lower mood states in the affected person. The electroencephalogram (EEG) signals are highly complex, nonlinear, and nonstationary in nature. The characteristics of the signal vary with the age and mental state of the subject. The signs of abnormality may be invisible to the naked eyes. Even when they are visible, deciphering the minute changes indicating abnormality is tedious and time consuming for the clinicians. This paper presents a novel method for automated EEG-based diagnosis of depression using nonlinear methods: fractal dimension, largest Lyapunov exponent, sample entropy, detrended fluctuation analysis, Hurst's exponent, higher order spectra, and recurrence quantification analysis. A novel Depression Diagnosis Index (DDI) is presented through judicious combination of the nonlinear features. The DDI calculated automatically based on the EEG recordings can be used to diagnose depression objectively using just one numeric value. Also, these features extracted from nonlinear methods are ranked using the t value and fed to the support vector machine (SVM) classifier. The SVM classifier yielded the highest classification performance with an average accuracy of about 98%, sensitivity of about 97%, and specificity of about 98.5%.
The complex, nonlinear and non-stationary electroencephalogram (EEG) signals are very tedious to interpret visually and highly difficult to extract the significant features from them. The linear and nonlinear methods are effective in identifying the changes in EEG signals for the detection of depression. Linear methods do not exhibit the complex dynamical variations in the EEG signals. Hence, chaos theory and nonlinear dynamic methods are widely used in extracting the EEG signal features for computer-aided diagnosis (CAD) of depression. Hence, this article presents the recent efforts on CAD of depression using EEG signals with a focus on using nonlinear methods. Such a CAD system is simple to use and may be used by the clinicians as a tool to confirm their diagnosis. It should be of a particular value to enable the early detection of depression.
The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability.
Results suggests that PTT response reflects the myogenic components in the early part of RH and PPG amplitude response reflects the metabolic component reinforcing the later course of RH. PPG amplitude and PTT can be used to quantify the changes in diameter and tone of the vessel wall, respectively during RH. The collective responses of PPG amplitude and PTT can be more appropriate to facilitate PPG technique for monitoring of vasodilation caused by RH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.