Genetic analysis of the diabetic GK rat has revealed several diabetes susceptibility loci. Congenic strains have been established for the major diabetes locus, Niddm1, by transfer of GK alleles onto the genome of the normoglycemic F344 rat. Niddm1 was dissected into two subloci, physically separated in the congenic strains Niddm1b and Niddm1i, each with at least one disease susceptibility gene. Here we have mapped Niddm1b to 1 cM by genetic and pathophysiological characterization of new congenic substrains for the locus. The gene encoding insulin-degrading enzyme (IDE:) was located to this 1 cM region, and the two amino acid substitutions (H18R and A890V) identified in the GK allele reduced insulin-degrading activity by 31% in transfected cells. However, when the H18R and A890V variants were studied separately, no effects were observed, demonstrating a synergistic effect of the two variants on insulin degradation. No effect on insulin degradation was observed in cell lysates, indicating that the effect is coupled to receptor-mediated internalization of insulin. Congenic rats with the IDE: GK allele displayed post-prandial hyperglycemia, reduced lipogenesis in fat cells, blunted insulin-stimulated glucose transmembrane uptake and reduced insulin degradation in isolated muscle. Analysis of additional rat strains demonstrated that the dysfunctional IDE: allele was unique to GK. These data point to an important role for IDE: in the diabetic phenotype in GK.
Genetic studies of the type 2 diabetes-like GK rat have revealed several susceptibility loci for the compound diabetes phenotype. Congenic strains were established for Niddm1, the major quantitative trait locus (QTL) for postprandial glucose levels, by transfer of GK alleles onto the genome of the normoglycemic F344 rat. Despite the polygenic nature of diabetes in GK, the locus-specific diabetes phenotype was retained in the congenic strain Niddmla, containing a GK-derived genomic fragment of 52 cM from the Niddm1 locus. Furthermore, Niddm1 was divided into two non-overlapping loci, physically separated in the two congenic strains Niddmlb and Niddm1i with distinct metabolic phenotypes. Both strains displayed postprandial hyperglycemia and reduced insulin action in isolated adipose cells. Furthermore, Niddm1i already exhibits a pronounced in vivo insulin secretion defect at 65 days, while Niddm1b develops a relative insulin secretory defect at 95 days. This suggests that Niddm1i impairs mechanisms common to insulin secretion in pancreatic B-cells and insulin action in adipocytes. Niddm1b rats show signs of increasing insulin resistance with age associated with obesity, hyperinsulinemia, and dyslipidemia. Moreover, the data indicated nonallelic interaction (epistasis) between Niddm1b and Niddm1i on the postprandial glucose levels. These data emphasize the pathophysiological complexity of diabetes, even within an apparently single QTL, and demonstrate the potential of the GK model in transforming the multifactorial diabetes phenotype into single traits, suitable for positional cloning.
IntroductionDietary control of classic phenylketonuria (PKU) needs restriction of natural proteins; adequate protein intake is achieved by adding low phenylalanine (phe) formulae. The adequacy of this diet for normal bone mineralization had not been sufficiently evaluated. Our aim was to evaluate and follow up bone mineral density (BMD) in children and adolescents with PKU within a 2-year time interval to assess the adequacy of a phenylalanine restricted diet for bone mineralization and to search for a possible relationship between BMD, dietary control and blood phenylalanine (phe) concentrations.Material and methodsThirty-two patients with classic PKU (3-19 years) were evaluated for their bone mineral status using dual energy X-ray absorptiometry (DEXA) both at the beginning (baseline) and the end (follow-up) of the study.ResultsLow BMD was detected in 31.25% at the start and in 6.25% of patients after 2 years follows-up. No relationship was found between BMD and the duration of diet compliance and phe level as well.ConclusionsIn this study the low BMD detected in our patients was both at baseline and follow-up independent of diet restriction. A yearly DEXA would be highly beneficial for early detection and treatment, thus preventing osteoporosis and decreasing the risk of fractures. We also suggest the importance of searching for new emerging therapies such as enzyme substitution or gene therapy as low protein diet compliance was not enough to maintain normal bone mineral density.
The changes in serum leptin levels during growth hormone (GH) treatment were studied in 27 children, 17 with GH deficiency (GHD), 10 with idiopathic short stature (ISS), and 9 with Prader-Willi syndrome (PWS). Within 1 month of GH treatment, serum leptin levels decreased by 40% in the GHD children (p < 0.01). There was no significant change in serum leptin level in the children with ISS. In children with PWS, the mean serum leptin level decreased by almost 60% after 3 months of treatment (p < 0.001). Thereafter, no further decline was observed in any of the 3 groups. Changes in body composition became evident first after the 3 months of treatment. In the GHD children, the BMI was unchanged while the mean body fat percentage was 2.7% lower after 1 year of GH treatment (p < 0.05). In the ISS children, neither BMI nor body fat percentage were significantly changed during treatment. The PWS children exhibited a significant decrease in BMI after 6 months of GH treatment without any further change during the remaining period of treatment. In this group, the mean body fat percentage decreased from 42 ± 2.4 to 28 ± 2.2% after treatment (p < 0.001). The finding that the fall in leptin occurs before changes in body composition become detectable suggests a direct effect of GH on leptin production, metabolism, or clearance.
Aims-To investigate the dynamics between plasma and dialysate glucose during hypoglycaemia in children. Study design-Six children in prepuberty or early puberty were investigated by multiple blood sampling and microdialysis of subcutaneous adipose tissue during a standard arginine-insulin tolerance test. Glucose and glycerol, as an index of lipolysis, were measured in samples from both compartments. Plasma concentrations of insulin and the main counterregulatory hormones were also measured. Results-Plasma and dialysate glucose concentrations were very similar at baseline and increased in concert after infusion of arginine, probably in response to glucagon release. After insulin injection, glucose in both plasma and dialysate fell in parallel. The subsequent hypoglycaemic stress response induced a rapid rebound in the plasma concentration with a mean (SD) delay in the dialysate of 16 (3) minutes. Plasma glycerol was approximately fivefold lower than in the dialysate and did not fluctuate significantly. Dialysate glycerol decreased with arginine infusion and reached a nadir immediately following insulin administration. Subsequently, the antilipolytic eVect of insulin was overcome by the hypoglycaemic stress response, and lipolysis prevailed in spite of hyperinsulinaemia. Conclusion-After rapidly induced hypoglycaemia, rebound of interstitial glucose concentrations is significantly delayed compared with plasma concentrations, and the antilipolytic eVect of hyperinsulinaemia is opposed possibly by the hypoglycaemic stress response. (Arch Dis Child 1999;80:42-45)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.