A radiolabeled anti-HER2 Affibody molecule (Z HER2:342 ) targets HER2-expressing xenografts with high selectivity and gives good imaging contrast. However, the small size (f7 kDa) results in rapid glomerular filtration and high renal accumulation of radiometals, thus excluding targeted therapy. Here, we report that reversible binding to albumin efficiently reduces the renal excretion and uptake, enabling radiometal-based nuclide therapy.
Non-insulin dependent diabetes mellitus (NIDDM) is a major public health problem, but its aetiology remains poorly understood. We have performed a comprehensive study of the genetic basis of diabetes in the Goto-Kakizaki (GK) rat, the most widely used animal model of non-obese NIDDM. The genetic dissection of NIDDM using this model has allowed us to map three independent loci involved in the disease. In addition, we identify a major factor affecting body weight, but not glucose tolerance, on chromosome 7 and map a further 10 regions that are suggestive for linkage. We conclude that NIDDM is polygenic and fasting hyperglycaemia and postprandial hyperglycaemia clearly have distinct genetic bases.
Genetic analysis of the diabetic GK rat has revealed several diabetes susceptibility loci. Congenic strains have been established for the major diabetes locus, Niddm1, by transfer of GK alleles onto the genome of the normoglycemic F344 rat. Niddm1 was dissected into two subloci, physically separated in the congenic strains Niddm1b and Niddm1i, each with at least one disease susceptibility gene. Here we have mapped Niddm1b to 1 cM by genetic and pathophysiological characterization of new congenic substrains for the locus. The gene encoding insulin-degrading enzyme (IDE:) was located to this 1 cM region, and the two amino acid substitutions (H18R and A890V) identified in the GK allele reduced insulin-degrading activity by 31% in transfected cells. However, when the H18R and A890V variants were studied separately, no effects were observed, demonstrating a synergistic effect of the two variants on insulin degradation. No effect on insulin degradation was observed in cell lysates, indicating that the effect is coupled to receptor-mediated internalization of insulin. Congenic rats with the IDE: GK allele displayed post-prandial hyperglycemia, reduced lipogenesis in fat cells, blunted insulin-stimulated glucose transmembrane uptake and reduced insulin degradation in isolated muscle. Analysis of additional rat strains demonstrated that the dysfunctional IDE: allele was unique to GK. These data point to an important role for IDE: in the diabetic phenotype in GK.
Here we show that an affinity proteomics strategy using affinity-purified antibodies raised against recombinant human protein fragments can be used for chromosomewide protein profiling. The approach is based on affinity reagents raised toward bioinformatics-designed protein epitope signature tags corresponding to unique regions of individual gene loci. The genes of human chromosome 21 identified by the genome efforts were investigated, and the success rates for de novo cloning, protein production, and antibody generation were 85, 76, and 56%, respectively. Using human tissue arrays, a systematic profiling of protein expression and subcellular localization was undertaken for the putative gene products. The results suggest that this affinity proteomics strategy can be used to produce a proteome atlas, describing distribution and expression of proteins in normal tissues as well as in common cancers and other forms of diseased tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.