Abstract-Photo Response Non-Uniformity (PRNU) noise is a sensor pattern noise characterizing the imaging device. It has been broadly used in the literature for source camera identification and image authentication. The abundant information that the sensor pattern noise carries in terms of the frequency content makes it unique, and hence suitable for identifying the source camera and detecting image forgeries. However, the PRNU extraction process is inevitably faced with the presence of image-dependent information as well as other non-unique noise components. To reduce such undesirable effects, researchers have developed a number of techniques in different stages of the process, i.e., the filtering stage, the estimation stage, and the postestimation stage. In this paper, we present a new PRNU-based source camera identification and verification system and propose enhancements in different stages. First, an improved version of the Locally Adaptive Discrete Cosine Transform (LADCT) filter is proposed in the filtering stage. In the estimation stage, a new Weighted Averaging (WA) technique is presented. The postestimation stage consists of concatenating the PRNUs estimated from color planes in order to exploit the presence of physical PRNU components in different channels. Experimental results on two image datasets acquired by various camera devices have shown a significant gain obtained with the proposed enhancements in each stage as well as the superiority of the overall system over related state-of-the-art systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.