This study investigated the total hemodynamic energy (THE) and surplus hemodynamic energy transmission (SHE) of a novel adult extracorporeal life support (ECLS) system with nonpulsatile and pulsatile settings and varying pulsatility to define the most effective setting for this circuit. The circuit consisted of an i-cor diagonal pump (Xenios AG, Heilbronn, Germany), an XLung membrane oxygenator (Xenios AG), an 18 Fr Medos femoral arterial cannula (Xenios AG), a 23/25 Fr Estech RAP femoral venous cannula (San Ramon, CA, USA), 3/8 in ID × 140 cm arterial tubing, and 3/8 in ID × 160 cm venous tubing. Priming was done with lactated Ringer's solution and packed red blood cells (HCT 36%). The trials were conducted at flow rates 1-4 L/min (1 L/min increments) under nonpulsatile and pulsatile mode, with differential speed values 1000-4000 rpm (1000 rpm increments) at 36°. The pseudo patient's mean arterial pressure was kept at 100 mm Hg using a Hoffman clamp during all trials. Real-time flow and pressure data were collected using a custom-based data acquisition system. Mean pressures across the circuit increased with increasing flow rates, but increased insignificantly with increasing differential speed values. Mean pressure did not change significantly between pulsatile and nonpulsatile modes. Pulsatile flow created more THE than nonpulsatile flow at the preoxygenator site (P < 0.01). Of the different components of the circuit, the arterial cannula created the greatest THE loss. THE loss across the circuit ranged from 24.8 to 71.3%. Still, under pulsatile mode, more THE was delivered to the pseudo patient at low flow rates. No SHE was created with nonpulsatile flow, but SHE was created with pulsatile flow, and increased with increasing differential speed values. At lower flow rates (1-2 L/min), the arterial cannula contributed the most to SHE loss, but at higher flow rates the arterial tubing created the most SHE loss. The circuit pressure drop values across all flow rates were 33.1-246.5 mm Hg, and were slightly higher under pulsatile mode than nonpulsatile mode. The i-cor diagonal pump creates satisfactory pulsatile and nonpulsatile flows, and can easily change the pulsatile amplitude and energy transmission. The attributes of the XLung membrane oxygenator include low resistance, low energy loss, and low pressure drops at all flow rates and differential speed values. The arterial cannula created the highest pressure drop of all components of the circuit. Pulsatile flow improved the transmission of hemodynamic energy to the pseudo patient without significantly affecting the pressure drops across the circuit.
Our study confirmed that both the Sorin KIDS D131 and the Terumo Capiox AF02 were equivalent in their ability to remove significant numbers of GME, the amount of pressure drop and the total hemodynamic energy loss across the arterial filters at the various flow rates. An arterial filter is not an option, but a necessity for removing microemboli delivered to the patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.