Despite their transformative role in our society, oxide glasses remain brittle. Although extrinsic postprocessing techniques can partially mitigate this drawback, they come with undesirable side effects. Alternatively, topological engineering offers an attractive option to enhance the intrinsic strength and damage resistance of glass. On the basis of this approach, we report here the discovery of a novel melt-quenched lithium aluminoborate glass featuring the highest crack resistance ever reported for a bulk oxide glass. Relying on combined mechanical and structural characterizations, we demonstrate that this unusual damage resistance originates from a significant self-adaptivity of the local atomic topology under stress, which, based on a selection of various oxide glasses, is shown to control crack resistance. This renders the lithium aluminoborate glass a promising candidate for engineering applications, such as ultrathin, yet ultrastrong, protective screens.
The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be <10 ppm (by mass), these Re results implied that the solubility should not be a limiting factor in processing radioactive wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system.
Sodium aluminoborate glasses are found to exhibit favorable mechanical properties, especially high crack resistance, due to their relatively low resistance to network compaction during sharp-contact loading. We here reveal the origin of the high crack resistance by investigating changes in structure and mechanical properties in compositions ranging from peralkaline to peraluminous and by varying the pressure history through an isostatic N 2-mediated pressure treatment at elevated temperature. This approach allows us to study the composition dependence of the ease of the glassy network compaction and the accompanying changes in structure and properties, which shed light on the processes occurring during indentation. Through solid state NMR measurements, we show that the network densification involves an increase in the average coordination number of both boron and aluminum and a shortening of the sodium-oxygen bond length. These changes in the short-range order of the glassy networks manifest themselves as an increase in, e.g., density and indentation hardness. We also demonstrate that the glasses most prone to network compaction exhibit the highest damage resistance, but surprisingly the crack resistance scales better with the relative density increase achieved by the hot compression treatment rather than with the extent of densification induced by indentation. This suggests that tuning the network structure may lead to the development of more damage resistant glasses, thus addressing the main drawback of this class of materials.
Clarifying the effect of pressure on the structure of aluminosilicate glasses is important for understanding the densification mechanism of these materials under pressure and the corresponding changes in macroscopic properties. In this study, we examine changes in density, network structure, indentation hardness, and crack resistance of sodium aluminosilicate glasses with varying Al/Si ratio and thus non-bridging oxygen (NBO) content before and after 1 GPa isostatic compression at elevated temperature. With increasing NBO content, the silicate network depolymerizes, resulting in higher atomic packing density, lower hardness, and higher crack resistance. The ability of the glasses to densify under isostatic compression is higher in the high-NBO glasses and these glasses also exhibit more pronounced pressure-induced changes in mechanical properties. The 27 Al NMR data show a surprising presence of five-fold aluminum in the as-made high-NBO glasses, with additional formation upon compression. Our study therefore provides new insights into the complicated relationship between Al coordination and NBO content in aluminosilicate glasses and how it affects their densification behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.