Moringa oleifera, also known as the “tree of life” or “miracle tree,” is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.
BackgroundInjury to a nerve is the most common reason of acquired peripheral neuropathy. Therefore, searching for effective substance to recover of nerve after injury is need of present era. The current study investigates the protective potential of Standardized Fruit Extract of Punica granatum L (PFE) [Ellagic acid (41.6%), Punicalagins (10%), Granatin (5.1%)] in Tibial & Sural Nerve Transection (TST) induced neuropathic pain in rats.MethodsTST was performed by sectioning tibial and sural nerve portions of the sciatic nerve and leaving the common peroneal nerve intact. Acetone drop, pin-prick, hot plate, paint brush & Walking Track tests were performed to assess cold allodynia; mechanical heat, hyperalgesia and dynamic mechanical allodynia & tibial functional index respectively. The levels of TNF-α, TBARS, GSH and Nitrite were measured in the sciatic nerve as an index of inflammation & oxidative stress.ResultsTST led to significant development of cold allodynia; mechanical and heat hyperalgesia; dynamic mechanical allodynia; functional deficit in walking along with rise in the levels of TBARS, TNF-α, GSH and Nitrite. Administrations of PFE (100 & 300 mg/kg oral), significantly attenuate TST induced behavioral & biochemical changes. Pretreatments of BADGE (120 mg/kg IP) a PPAR-γ antagonist and nitric oxide precursor L-arginine (100 mg/kg IP) abolished the protective effect of PFE. Whereas, pretreatment of L-NAME (5 mg/kg IP) a NOS inhibitor significantly potentiated PFE’s protective effect of PFE.ConclusionPFE shown to have attenuating effect in TST induced neuropathic pain which may be attributed to potential PPAR-gamma agonistic activity, nitric oxide inhibitory, anti-inflammatory and anti oxidative actions.
Rising popularity of phytomedicines in various diseased conditions have strengthened the significance of plant-research and evaluation of phytoextracts in clinical manifestations. Pterocarpus marsupium Roxb., a medicinal plant, known for its anti-oxidant and anti-diabetic activity is a rich source of phytochemicals with antihyperglycemic and antihyperlipidemic activities. However, its possible role in diabetic complications is not evaluated yet. The present study explores the possible role of alcoholic extract of heartwood of P. marsupium in the treatment of long-term diabetic complications. The alcoholic extract of P. marsupium was evaluated for advanced glycation-end-products formation, erythrocyte sorbitol accumulation and rat kidney aldose reductase enzyme inhibition at the concentration of 25–400 μg/ml using in-vitro bioassays. Also the phytoextract at the concentration of 10–320 μg/ml was evaluated for its antioxidant potential by in-vitro antioxidant assays which includes, determination of total phenol content; reducing power assay; nitric oxide scavenging activity; superoxide radical scavenging activity; total antioxidant capacity; total flavonoid content; DPPH scavenging activity; and hydrogen peroxide scavenging activity.The alcoholic extract of P. marsupium across varying concentrations showed inhibitory effect as evident by IC50 on advanced glycation-end-products formation (55.39 μg/ml), sorbitol accumulation (151.00 μg/ml) and rat kidney aldose reductase (195.88 μg/ml). The phytoextract also exhibited high phenolic and flavonoid contents with promising antioxidant potential against the antioxidant assays evaluated. The present investigation suggests that the phytoextract showed prominent antioxidant, antiglycation property and, inhibited accumulation of sorbitol and ALR enzyme, thus promising a beneficial role in reducing/delaying diabetic complications.
Inclusion of metabolic considerations in the drug design process leads to significant development in the field of chemical drug targeting and the design of safer drugs during past few years which is a part of an approach now designated as Retro metabolic drug design (RMDD). This approach represents systematic methodologies that integrate structure-activity and structure-metabolism relationships and are aimed to design safe, locally active compounds with an improved therapeutic index. It embraces two distinct methods, chemical delivery systems and a soft drug approach. Present review recapitulates an impression of RMDD giving reflections on the chemical delivery system and the soft drug approach and provides a variety of examples to embody its concepts. Successful application of such design principles has already been applied to a number of marketed drugs like esmolol; loteprednol etc., and many other candidates like beta blockers, ACE inhibitors, alkylating agents, antimicrobials etc., are also under investigation.
In the present experimental work, we investigate the protective potential of standardized Momordica charantia L fruit extract [gallic acid (GA) 6%; N8% bitters {momordicosides K (3%) and L (2%); and momordicines I (2%) and II (3%)}] (MC) comparable to its marker compound gallic acid in chemo-toxic neuropathy induced by vincristine [75 μg/kg intra-peritoneal (i.p.) for 10 consecutive days] in rats. An array of behavioral examinations was carried out on days 1st, 12th and 21st, followed by various biochemical and histopathological studies at the end. Vincristine significantly induced cold and dynamic mechanical allodynia, mechanical and heat hyperalgesia; functional deficit in walking and a rise in the levels of TNF-α, IL 6, mitochondrial complexes, myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), and nitrite along with decrease in glutathione (GSH). Administration of MC [400 and 800 mg/kg, per oral (p.o.)], GA (30 mg/kg, p.o.) and gabapentin (100 mg/kg, p.o.) attenuated the vincristine induced behavioral and biochemical changes. MC demonstrated superior antinociceptive activity in comparison to GA. Histopathological evaluation also divulged defending the effects of MC. Pretreatment of saclofen (1 mg/kg, i.p.), picrotoxin (1 mg/kg, i.p.) upturned the antinociceptive action of MC, but ingestion of GABA (100 mg/kg, i.p.) potentiated the action of MC. Additionally, pretreatment with L-arginine [nitric oxide (NO) donor; 100 mg/kg, i.p.] inverted the antinociceptive action of MC; whereas, aminoguanidine (iNOS inhibitor) and 7-nitroindazole (nNOS inhibitor) potentiated it. Besides this a PPARγ antagonist BADGE did not amend the effect of MC. Corroboratively, the attenuating effect of MC in vincristine induced neuropathy is attributed to its modulating action on GABAergic system along with antimitotoxic, NOS inhibition, anti-inflammatory and anti oxidative activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.