Overall, 25% and 13% of isolates were MDR and multi-azole resistant, respectively. The most common resistance combination was azoles and 5-flucytosine in 14% followed by azoles and amphotericin B in 7% and azoles and echinocandins in 2% of isolates.
In New Delhi, India, candidemia affected 15 critically ill coronavirus disease patients admitted to an intensive care unit during April–July 2020.
Candida auris
accounted for two thirds of cases; case-fatality rate was high (60%). Hospital-acquired
C. auris
infections in coronavirus disease patients may lead to adverse outcomes and additional strain on healthcare resources.
Multiple Erg11 amino acid substitutions were identified in clinical isolates of Candida auris originating from India and Colombia. Elevated azole MICs were detected in Saccharomyces cerevisiae upon heterologous expression of C. auris
ERG11 alleles that encoded for Y132F or K143R substitutions; however, expression of alleles encoding I466M, Y501H, or other clade-defined amino acid differences yielded susceptible MICs.
Candida auris is a multidrug resistant pathogen that presents a serious global threat to human health. As C. auris is a newly emerged pathogen, several questions regarding its ecological niche remain unexplored. While species closely related to C. auris have been detected in different environmental habitats, little is known about the natural habitat(s) of C. auris. Here, we explored the virgin habitats around the very isolated Andaman Islands in the Indian Ocean for evidence of C. auris. We sampled coastal wetlands, including rocky shores, sandy beaches, tidal marshes, and mangrove swamps, around the Andaman group of the Andaman & Nicobar Islands, Union Territory, in India. Forty-eight samples of sediment soil and seawater were collected from eight sampling sites representing the heterogeneity of intertidal habitats across the east and west coast of South Andaman district. C. auris was isolated from two of the eight sampling sites, a salt marsh and a sandy beach. Interestingly, both multidrug-susceptible and multidrug-resistant C. auris isolates were found in the sample. Whole-genome sequencing analysis clustered the C. auris isolates into clade I, showing close similarity to other isolates from South Asia. Isolation of C. auris from the tropical coastal environment suggests its association with the marine ecosystem. The fact that viable C. auris was detected in the marine habitat confirms C. auris survival in harsh wetlands. However, the ecological significance of C. auris in salt marsh wetland and sandy beaches to human infections remains to be explored.
IMPORTANCE Candida auris is a recently emerged multidrug-resistant fungal pathogen capable of causing severe infections in hospitalized patients. Despite its recognition as a human pathogen a decade ago, so far the natural ecological niche(s) of C. auris remains enigmatic. A previous hypothesis suggested that C. auris might be native to wetlands, that its emergence as a human pathogen might have been linked to global warming effects on wetlands, and that its enrichment in that ecological niche was favored by the ability of C. auris for thermal tolerance and salinity tolerance. To understand the mystery of environmental niches of C. auris, we explored the coastal wetland habitat around the very isolated Andaman Islands in the Indian Ocean. C. auris was isolated from the virgin habitats of salt marsh area with no human activity and from a sandy beach. C. auris isolation from the marine wetlands suggests that prior to its recognition as a human pathogen, it existed as an environmental fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.