Hybrid and electric vehicles are becoming increasingly popular due to their benefits in lowering emissions and lower dependency on fossil fuels. A hybrid vehicle battery spends around 70% of its time in storage at different temperatures compared to being cycled. However there is less work on the effect of storage on battery life time than on cycling. Storage life time prediction is often complicated due to interdependency of ageing mechanisms. In particular, storage ageing is difficult to accelerate and moreover, the ageing is not linearly scalable with time. These characteristics are difficult to analyse using a model such as equivalent circuit models which depend heavily on experimental data. Electrochemical models are a feasible option to analyse the chemical and electrical response of a battery under storage conditions. In this work, the Pseudo Two Dimensional Model (P2D) equations are modified to include a continuous solvent reduction reaction responsible for capacity fade. A FORTRAN program is developed and finite volume based formulation is used to discretize the system of equations; electrolyte concentration, solid concentration, solid potential and electrolyte potential coupled with Butler-Volmer kinetics. An unconditionally-stable implicit method is adopted for time dependent calculations; the time discretization has first order accuracy. Mesh generation was done based on the initial radius and battery dimensions. The capability of this model to predict the SEI layer growth and internal resistance increase under different operating condition is used to analyse and quantify the parasitic ageing reactions. The over potential of the side reaction reduces to zero for a storage condition where no external current is applied. The capacity fading solvent reaction parameters are proportional to the interfacial surface area and the side reaction exchange current density. Thus the critical parameter controlling the rate of SEI layer growth is the side reaction exchange current density. Another important parameter is the temperature of the battery which is found to accelerate cell ageing. However, in this initial work, the analysis is limited to iso-thermal conditions since the dependency of temperature on cell performance is complex. The storage experiment can be divided into two main parts, the characterisation and the storage test. For the first one, an ESPEC thermal chamber has been used to control temperature and humidity level. For storage test, the cells are stored at 25°C at three different SoC values, 20%, 50% and 90% and the capacity characterisation test has been performed after 73, 139, 202 and 297 days to calculate the capacity of the cell. The side reaction coefficient in the electrochemical model was adjusted to match the experimental data for the first point after 73 days. The capacity at the remaining points are predicted based on this initial parameterisation. Conclusions about the parasitic reaction are made based on the variation side reaction exchange current density. The storage results are also used to fine tune the SEI properties and the influence of storage on capacity fading side reaction is investigated for the first time using an electrochemical model. This work establishes a guideline for calculating the SEI properties based on storage ageing experimentation where the driving potential is nearly zero. The results presented in this work can be used as a guiding tool for better battery design for different storage profiles. Figure 1
There is a paucity of literature on measurable baseline parameters predicting response and guiding selection for bronchial thermoplasty (BT). This study examines whether baseline gas trapping, as assessed by plethysmography is associated with a response to BT at 12 months.Forty three consecutive patients with severe asthma (57.6±13.3 years) were evaluated at baseline and 12 months post BT. Data collected at both time points included spirometry, body plethysmography, and four clinical outcome measures, namely Asthma Control Questionnaire score (ACQ), annual exacerbation frequency, maintenance oral corticosteroid requirement and short acting beta agonist use).At baseline, participants had severe airflow obstruction (FEV1 49.1±15.8%) with marked gas trapping (RV 150.3±40.8%, RV/TLC 51.3±10.5%), poor symptom control (ACQ 3.3±1.0) and frequent exacerbations (4 (8)). Twelve months after BT, significant improvements were observed in all four clinical outcome measures. However, baseline RV and RV/TLC were not significantly associated with changes in ACQ nor any other clinical outcome measure, and changes in RV and RV/TLC did not significantly correlate with a change in any clinical outcome measure.Plethysmography derived gas trapping does not demonstrate utility in predicting response and guiding selection for BT. An improvement in gas trapping was not associated with positive clinical outcomes, suggesting this may not the dominant mode of action of BT in generating clinical improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.