In recent times, metal oxide nanoparticles (NPs) have been regarded as having important commercial utility. However, the potential toxicity of these nanomaterials has also been a crucial research concern. In this regard, an important solution for ensuring lower toxicity levels and thereby facilitating an unhindered application in human consumer products is the green synthesis of these particles. Although a naïve approach, the biological synthesis of metal oxide NPs using microorganisms and plant extracts opens up immense prospects for the production of biocompatible and cost-effective particles with potential applications in the healthcare sector. An important area that calls for attention is cancer therapy and the intervention of nanotechnology to improve existing therapeutic practices. Metal oxide NPs have been identified as therapeutic agents with an extended half-life and therapeutic index and have also been reported to have lesser immunogenic properties. Currently, biosynthesized metal oxide NPs are the subject of considerable research and analysis for the early detection and treatment of tumors, but their performance in clinical experiments is yet to be determined. The present review provides a comprehensive account of recent research on the biosynthesis of metal oxide NPs, including mechanistic insights into biological production machinery, the latest reports on biogenesis, the properties of biosynthesized NPs, and directions for further improvement. In particular, scientific reports on the properties and applications of nanoparticles of the oxides of titanium, cerium, selenium, zinc, iron, and copper have been highlighted. This review discusses the significance of the green synthesis of metal oxide nanoparticles, with respect to therapeutically based pharmaceutical applications as well as energy and environmental applications, using various novel approaches including one-minute sonochemical synthesis that are capable of responding to various stimuli such as radiation, heat, and pH. This study will provide new insight into novel methods that are cost-effective and pollution free, assisted by the biodegradation of biomass.
An efficient green synthesis of diethyl (((4-(N-(5-methyl-4,5-dihydroisoxazol-3-yl)sulfamoyl)phenyl)amino)(substituted methyl) phosphonates was accomplished by the condensation of 4-amino-N-(5-methyl-4,5-dihydroisoxazol-3yl)benzenesulfonamide with various aldehydes and diethyl phosphite using mesoporous titania-ceria mixed oxide (MTCMO) as a nano-catalyst under microwave irradiation and solvent free conditions. Antimicrobial activity was performed for the synthesized compounds and the compounds 4a, 4c, 4d, 4e and 4f exhibited highest inhibitory activity against Escherichia coli and Bacillus subtilis using Penicillin and Tetracycline as standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.