Type 2 diabetes is a heterogeneous disease characterized by insulin resistance and altered glucose and lipid metabolism in multiple organs. To understand the complex series of events that occur during the development of obesityassociated diabetes, we examined the temporal pattern of changes in insulin action and glucose metabolism in individual organs during chronic high-fat feeding in C57BL/6 mice. Insulin-stimulated cardiac glucose metabolism was significantly reduced after 1.5 weeks of high-fat feeding, and cardiac insulin resistance was associated with blunted Akt-mediated insulin signaling and GLUT4 levels. Insulin resistance in skeletal muscle, adipose tissue, and liver developed in parallel after 3 weeks of high-fat feeding. Diet-induced whole-body insulin resistance was associated with increased circulating levels of resistin and leptin but unaltered adiponectin levels. High-fat feeding caused insulin resistance in skeletal muscle that was associated with significantly elevated intramuscular fat content. In contrast, diet-induced hepatic insulin resistance developed before a marked increase in intrahepatic triglyceride levels. Cardiac function gradually declined over the course of high-fat feeding, and after 20 weeks of high-fat diet, cardiac dysfunction was associated with mild hyperglycemia, hyperleptinemia, and reduced circulating adiponectin levels. Our findings demonstrate that cardiac insulin resistance is an early adaptive event in response to obesity and develops before changes in whole-body glucose homeostasis. This suggests that obesity-associated defects in cardiac function may not be due to insulin resistance per se but may be attributable to chronic alteration in cardiac glucose and lipid metabolism and circulating adipokines. Diabetes 54: 3530 -3540, 2005
Background-Cellular hypertrophy requires coordinated regulation of progrowth and antigrowth mechanisms. In cultured neonatal cardiomyocytes, Foxo transcription factors trigger an atrophy-related gene program that counters hypertrophic growth. However, downstream molecular events are not yet well defined. Methods and Results-Here, we report that expression of either Foxo1 or Foxo3 in cardiomyocytes attenuates calcineurin phosphatase activity and inhibits agonist-induced hypertrophic growth. Consistent with these results, Foxo proteins decrease calcineurin phosphatase activity and repress both basal and hypertrophic agonist-induced expression of MCIP1.4, a direct downstream target of the calcineurin/NFAT pathway. Furthermore, hearts from Foxo3-null mice exhibit increased MCIP1.4 abundance and a hypertrophic phenotype with normal systolic function at baseline. Together, these results suggest that Foxo proteins repress cardiac growth at least in part through inhibition of the calcineurin/NFAT pathway. Given that hypertrophic growth of the heart occurs in multiple contexts, our findings also suggest that certain hypertrophic signals are capable of overriding the antigrowth program induced by Foxo. Consistent with this, multiple hypertrophic agonists triggered inactivation of Foxo proteins in cardiomyocytes through a mechanism requiring the PI3K/Akt pathway. In addition, both Foxo1 and Foxo3 are phosphorylated and consequently inactivated in hearts undergoing hypertrophic growth induced by hemodynamic stress. Key Words: angiotensin Ⅲ calcineurin Ⅲ hypertrophy I n response to stress from neurohumoral activation, hypertension, or other myocardial injury, the heart initially compensates with an adaptive hypertrophic increase in mass. The resulting growth and remodeling response alters the balance between protein synthesis and protein degradation. In skeletal muscle, activation of progrowth signaling pathways is accompanied by deactivation of pathways that promote proteolysis. Prominent among the atrophy-inducing pathways are those governed by Forkhead box transcription factors, O subfamily (Foxo). Conclusions-This Clinical Perspective p 1168Foxo transcription factors regulate key physiological functions, including responses to stress, cell-cycle progression, protein degradation, and apoptosis. 1,2 There are 4 mammalian Foxo genes: Foxo1 (FKHR), Foxo3 (FKHRL1), Foxo4 (AFX), and Foxo6. The transcriptional activities of Foxo proteins are governed by posttranslational modifications such as phosphorylation and acetylation. With respect to myocyte growth and remodeling, Foxo proteins induce ubiquitin ligases and promote proteolysis in skeletal muscle. 3,4 In heart, a number of signaling cascades involving transcription factors, kinases, and G-protein-coupled receptors are implicated in the regulation of muscle growth (see reviews 5-7 ). Among these, the calcineurin/nuclear factor of activated T cells (NFAT) pathway has been shown to be a key signaling cascade that promotes cardiac hypertrophy. 8 It has been reported recently...
Regulator of calcineurin 1 (RCAN1/MCIP1/DSCR1) regulates the calmodulin-dependent phosphatase calcineurin. Because it is located on human chromosome 21, RCAN1 has been postulated to contribute to mental retardation in Down syndrome and has been reported to be associated with neuronal degeneration in Alzheimer's disease. The studies herein are the first to assess the role of RCAN1 in memory and synaptic plasticity by examining the behavioral and electrophysiological properties of RCAN1 knock-out mice. These mice exhibit deficits in spatial learning and memory, reduced associative cued memory, and impaired late-phase long-term potentiation (L-LTP), phenotypes similar to those of transgenic mice with increased calcineurin activity. Consistent with this, the RCAN1 knock-out mice display increased enzymatic calcineurin activity, increased abundance of a cleaved calcineurin fragment, and decreased phosphorylation of the calcineurin substrate dopamine and cAMP-regulated phosphoprotein-32. We propose a model in which RCAN1 plays a positive role in L-LTP and memory by constraining phosphatase signaling.
Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease.
Rationale: Despite overwhelming evidence of the importance of circadian rhythms in cardiovascular health and disease, little is known regarding the circadian regulation of intracellular signaling pathways controlling cardiac function and remodeling.Objective: To assess circadian changes in processes dependent on the protein phosphatase calcineurin, relative to changes in phosphorylation of cardiac proteins, in normal, hypertrophic, and failing hearts. Methods and Results:We found evidence of large circadian oscillations in calcineurin-dependent activities in the left ventricle of healthy C57BL/6 mice. Calcineurin-dependent transcript levels and nuclear occupancy of the NFAT (nuclear factor of activated T cells) regularly fluctuated as much as 20-fold over the course of a day, peaking in the morning when mice enter a period of rest. Phosphorylation of the protein phosphatase 1 inhibitor 1 (I-1), a direct calcineurin substrate, and phospholamban, an indirect target, oscillated directly out of phase with calcineurin-dependent signaling. Using a surgical model of cardiac pressure overload, we found that although calcineurin-dependent activities were markedly elevated, the circadian pattern of activation was maintained, whereas, oscillations in phospholamban and I-1 phosphorylation were lost. Changes in the expression of fetal gene markers of heart failure did not mirror the rhythm in calcineurin/NFAT activation, suggesting that these may not be direct transcriptional target genes. Cardiac function in mice subjected to pressure overload was significantly lower in the morning than in the evening when assessed by echocardiography. Key Words: calcineurin Ⅲ circadian rhythms Ⅲ heart failure Ⅲ RCAN1/MCIP1 C ircadian rhythms are self-sustaining, 24-hour cycles in molecular, biochemical, and behavioral parameters that help an organism prepare for anticipated changes in physiological demand. Many important cardiovascular factors, including metabolism, heart rate, blood pressure, and hormone release, oscillate over a 24-hour period. 1 In humans, the incidence of adverse cardiac events, such as myocardial infarction, ventricular tachycardia, and death from ischemic heart disease, vary according to the time of day. 2 Despite overwhelming evidence of the importance of circadian rhythms in cardiovascular health and disease, little is known regarding the circadian regulation of intracellular signaling pathways in the heart. The molecular basis of the circadian clock consists of cellautonomous, positive and negative transcriptional and posttranscriptional feedback loops. 3 The "master clock," located in the suprachiasmatic nucleus within the hypothalamus, influences the phase of independent molecular clocks found in peripheral organs, including the heart. Many cells and tissues also display circadian fluctuations in cytoplasmic Ca 2ϩ levels, although the source of these Ca 2ϩ oscillations and their relationship to the transcriptional clock mechanism is not fully understood. 4 Dysregulation of Ca 2ϩ handling is a hallmark of hear...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.