A novel biofabrication modality, electrophoretic compaction with macromolecular alignment, was utilized to make collagen threads that mimic the native tendon’s structure and mechanical properties. A device with kinematic electrodes was designed to fabricate collagen threads in continuous length. For the first time, a 3D-biotextile was woven purely from collagen. Mechanical properties and load-displacement behavior of the biotextile mimicked those of the native tendon while presenting a porosity of 80%. The open pore network facilitated cell seeding across the continuum of the bioscaffold. Mesenchymal stem cells (MSCs) seeded in the woven scaffold underwent tenogenic differentiation in the absence of growth factors and synthesized a matrix that was positive for tenomodulin, COMP and type I collagen. Up-regulation of tenomodulin, a tendon specific marker, was 11.6 ± 3.5 fold, COMP was up-regulated 16.7 ± 5.5 fold, and Col I was up-regulated 6.9 ± 2.7 fold greater on ELAC threads when compared to randomly oriented collagen gels. These results demonstrate that a bioscaffold woven by using collagen threads with densely compacted and anisotropically aligned substrate texture stimulates tenogenesis topographically, rendering the electrochemically aligned collagen as a promising candidate for functional repair of tendons and ligaments.
Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104 ± 10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as "key residues", which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ∆G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists interested in understanding the importance of conservation of certain residues throughout the evolution in preserving the structure, function, and stability in proteins.
Solvent accessible surface area (SASA) of proteins has always been considered as a decisive factor in protein folding and stability studies. It is defined as the surface characterized around a protein by a hypothetical centre of a solvent sphere with the van der Waals contact surface of the molecule. Based on SASA values, amino acid residues of a protein can be classified as buried or exposed. There are various types of SASAs starting from relative solvent accessibility to absolute surface areas. Direct estimation of accurate SASAs of folded proteins experimentally at the atomic level is not possible. However, the SASA of a native protein can be estimated computationally from the atomic coordinates. Similarly, various simulation methods are available to compute the SASA of a protein in its unfolded state. In efforts to estimate the changes in SASA related to the protein folding, a number of the unfolded state models have been proposed. In this review, we have summarized different algorithms and computational tools for SASA estimations. Furthermore, online resources for SASA calculations and representations have also been discussed in detail. This review will be useful for protein chemists and biologists for the accurate measurements of SASA and its subsequent applications for the calculation of various biophysical and thermodynamic properties of proteins.
Due to the lack of efficient therapeutic options and clinical trial limitations, the FDA-approved drugs can be a good choice to handle Coronavirus disease (COVID-19). Many reports have enough evidence for the use of FDA-approved drugs which have inhibitory potential against target proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we utilized a structure-based drug design approach to find possible drug candidates from the existing pool of FDA-approved drugs and checked their effectiveness against the SARS-CoV-2. We performed virtual screening of the FDA-approved drugs against the main protease (Mpro) of SARS-CoV-2, an essential enzyme, and a potential drug target. Using well-defined computational methods, we identified Glecaprevir and Maraviroc (MVC) as the best inhibitors of SARS-CoV-2 Mpro. Both drugs bind to the substrate-binding pocket of SARS-CoV-2 Mpro and form a significant number of non-covalent interactions. Glecaprevir and MVC bind to the conserved residues of substrate-binding pocket of SARS-CoV-2 Mpro. This work provides sufficient evidence for the use of Glecaprevir and MVC for the therapeutic management of COVID-19 after experimental validation and clinical manifestations.
Microtubule affinity regulating kinase 4 (MARK4) is a Ser/Thr kinase belonging to AMPK-like family, has recently become an important drug target against cancer and neurodegenerative disorders. In this study, we have evaluated different natural dietary polyphenolics including rutin, quercetin, ferulic acid, hesperidin, gallic acid and vanillin as MARK4 inhibitors. All compounds are primarily binds to the active site cavity of MARK4. In silico observations were further complemented by the fluorescence-binding studies and isothermal titration calorimetry (ITC) measurements. We found that rutin and vanillin bind to MARK4 with a reasonably high affinity. ATPase and tau-phosphorylation assay further suggesting that rutin and vanillin inhibit the enzyme activity of MARK4 to a great extent. Cell proliferation, ROS quantification and Annexin-V staining studies are clearly providing sufficient evidences for the apoptotic potential of rutin and vanillin. In conclusion, rutin and vanillin may be considered as potential inhibitors for MARK4 and further exploited to design novel therapeutic molecules against MARK4 associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.