Introduction:Cysteine protease are biological catalysts which play a pivotal role in numerous biological reactions in organism. Much of the literature is inscribed to their biochemical significance, distribution and mechanism of action. Many diseases, e.g. Alzheimer’s disease, develop due to enzyme balance disruption. Understanding of cysteine protease’s disbalance is therefor a key to unravel the new possibilities of treatment. Cysteine protease are one of the most important enzymes for protein disruption during programmed cell death. Whether protein disruption is part of cell deaths is not enough clear in any cases. Thereafter, any tissue disruption, including proteolysis, generate more or less inflammation appearance.Review:This review briefly summarizes the current knowledge about pathological mechanism’s that results in AD, with significant reference to the role of cysteine protease in it. Based on the summary, new pharmacological approach and development of novel potent drugs with selective toxicity targeting cysteine protease will be a major challenge in years to come.
IntroductionAlzheimer's disease characterized clinically by a progressive and gradual decline in cognitive function and neuropathologically, by the presence of neuronal threats, specific neuron loss, synapse loss and disturbance of cholinergic synapses. Most people with Alzheimer's have the late-onset form of the disease, in which the symptoms become apparent in their mid-60s. Genetic Basis of Metabolic Changes in Alzheimer's DiseasesThe apolipoprotein E (APOE) gene is involved in late-onset Alzheimer's. This gene has several forms. One of them, APOE ε4, increases a person's risk of developing AD and is associated with an earlier age onset. Around 0.1% of the cases are familial forms of autosomal dominant inheritance, which has an onset before age 65 [1]. This form of the disease is known as onset familial Alzheimer's disease. Most of the autosomal dominant familial AD can be attributed to mutations in one of three genes: those encoding amyloid precursor protein (APP) and presenilins1 and 2 [2]. Most of the mutations in the APP and presenilin genes increase the production of a small protein called Aβ42, which is the main component of senile plaques [3]. Some of the mutations merely alter the ratio between Aβ42 and the other major forms particularly Aβ40 without increasing Aβ42 levels [4,5]. The major hallmarks of AD pathology are masses of the extracellular β-amyloid peptide (Aβ) and neurofibrillary tangles of the microtubule binding protein tau [6,7]. Aβ has crucial importance in the relation of AD as well as the crucial role of its pathogenesis. The neurotoxic potential of the Aβ peptide results from its biochemical properties, favoring aggregation into insoluble oligomers and protofibrils [7]. Etiological treatment of AD is AbstractAlzheimer disease (AD) is common worldwide and almost every case has comorbidities. One of the most common comorbidities of AD is Diabetes mellitus (DM), with or without metabolic syndrome. Both diseases effect nerve tissue and successful treatment would improve the status of the patient. In patients with Alzheimer disease treatment of DM, the treatment could be harmful to the AD, because of that high insulin intake. This may lead to progression of AD. Insulin is considered the best treatment for DM, but insulin therapy could increase comorbidity with AD. No specific therapy for AD is known up to date, so because of that DM is one of the most important risk for AD, concomitant therapy for DM should be planned very carefully. All options of DM therapy should be considered, and different mechanisms of anti-diabetic drugs are preferable. Treatment of AD is more complex metabolic syndrome is present. Any inflammation causes local tissue damage, including brain tissue during AD. Release of interleukins, primarily TNF-α, IL-6, IL-1β in the presence of adipokine leptin, maintains chronic inflammatory status in local brain tissue. Thus, low doses of immunosuppressant therapy should be considered for treatment of AD in future. To delay apoptosis of nerve tissue cells, brain and nerve tissue...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.