We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and Con-ceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET ) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.
Vision-language navigation (VLN) is the task of navigating an embodied agent to carry out natural language instructions inside real 3D environments. In this paper, we study how to address three critical challenges for this task: the cross-modal grounding, the ill-posed feedback, and the generalization problems. First, we propose a novel Reinforced Cross-Modal Matching (RCM) approach that enforces cross-modal grounding both locally and globally via reinforcement learning (RL). Particularly, a matching critic is used to provide an intrinsic reward to encourage global matching between instructions and trajectories, and a reasoning navigator is employed to perform cross-modal grounding in the local visual scene. Evaluation on a VLN benchmark dataset shows that our RCM model significantly outperforms previous methods by 10% on SPL and achieves the new state-of-the-art performance. To improve the generalizability of the learned policy, we further introduce a Self-Supervised Imitation Learning (SIL) method to explore unseen environments by imitating its own past, good decisions. We demonstrate that SIL can approximate a better and more efficient policy, which tremendously minimizes the success rate performance gap between seen and unseen environments (from 30.7% to 11.7%).
Sequence-to-sequence deep learning has recently emerged as a new paradigm in supervised learning for spoken language understanding. However, most of the previous studies explored this framework for building single domain models for each task, such as slot filling or domain classification, comparing deep learning based approaches with conventional ones like conditional random fields. This paper proposes a holistic multi-domain, multi-task (i.e. slot filling, domain and intent detection) modeling approach to estimate complete semantic frames for all user utterances addressed to a conversational system, demonstrating the distinctive power of deep learning methods, namely bi-directional recurrent neural network (RNN) with long-short term memory (LSTM) cells (RNN-LSTM) to handle such complexity. The contributions of the presented work are three-fold: (i) we propose an RNN-LSTM architecture for joint modeling of slot filling, intent determination, and domain classification; (ii) we build a joint multi-domain model enabling multi-task deep learning where the data from each domain reinforces each other; (iii) we investigate alternative architectures for modeling lexical context in spoken language understanding. In addition to the simplicity of the single model framework, experimental results show the power of such an approach on Microsoft Cortana real user data over alternative methods based on single domain/task deep learning.
We present deep communicating agents in an encoder-decoder architecture to address the challenges of representing a long document for abstractive summarization. With deep communicating agents, the task of encoding a long text is divided across multiple collaborating agents, each in charge of a subsection of the input text. These encoders are connected to a single decoder, trained end-to-end using reinforcement learning to generate a focused and coherent summary. Empirical results demonstrate that multiple communicating encoders lead to a higher quality summary compared to several strong baselines, including those based on a single encoder or multiple non-communicating encoders.
Variational autoencoders (VAEs) with an autoregressive decoder have been applied for many natural language processing (NLP) tasks. The VAE objective consists of two terms, (i) reconstruction and (ii) KL regularization, balanced by a weighting hyper-parameter β. One notorious training difficulty is that the KL term tends to vanish. In this paper we study scheduling schemes for β, and show that KL vanishing is caused by the lack of good latent codes in training the decoder at the beginning of optimization. To remedy this, we propose a cyclical annealing schedule, which repeats the process of increasing β multiple times. This new procedure allows the progressive learning of more meaningful latent codes, by leveraging the informative representations of previous cycles as warm re-starts. The effectiveness of cyclical annealing is validated on a broad range of NLP tasks, including language modeling, dialog response generation and unsupervised language pre-training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.