The prefrontal cortex (PFC) is thought to participate in high-level control over generation of behaviors (including the decision to execute actions1); indeed, imaging and lesion studies in human beings have revealed that PFC dysfunction can lead to either impulsive states with increased tendency to initiate action2, or to amotivational states characterized by hopeless and depressive symptoms3. In light of the opposite valence of these two phenotypes as well as the broad complexity of other tasks attributed to PFC, it may be that only a specific subclass of PFC neurons favors effortful behavioral responses to challenging situations. Here we develop and employ a quantitative method for continuous assessment and control of active response to behavioral challenge, synchronized with single-unit electrophysiology and optogenetics in freely moving rats. We first observed by recording in the medial PFC (mPFC) that many neurons were not simply movement-related in their spike firing patterns, but instead were selectively modulated from moment to moment according to the animal’s decision to act in a challenging situation. Surprisingly, we next found that direct activation of principal neurons in the mPFC had no detectable causal effect on this behavior. We next tested if this behavior could be causally mediated by only a subclass of mPFC cells defined by specific downstream wiring. Indeed, by leveraging optogenetic projection-targeting to control cells with specific efferent wiring patterns, we observed that selective activation of those mPFC cells projecting to the brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus implicated in major depressive disorder4, induced a profound, rapid, and reversible effect on selection of the active behavioral state. These results may be of importance in understanding the circuit basis of normal and pathological patterns of action selection and motivation in behavior.
Precisely defining the roles of specific cell types is an intriguing and challenging frontier in the study of intact biological systems, and has stimulated the rapid development of genetically-encoded observation and control tools. However, targeting these tools with adequate specificity remains challenging: most cell types are best defined by the intersection of two or more features such as active promoter elements, location, and connectivity. Here we have combined recombinase tools with engineered introns to achieve expression of genetically-encoded payloads conditional upon multiple cell-type features, using Boolean logical operations all governed by a single versatile vector. We use this approach to target intersectionally-specified populations of inhibitory interneurons in mammalian hippocampus and neurons of the ventral tegmental area defined by both genetic and wiring properties. This flexible and modular approach may expand the application of genetically-encoded interventional and observational tools for intact-systems biology.
Alterations in the balance between neuronal excitation and inhibition (E:I balance) have been implicated in the neural circuit activity–based processes that contribute to autism phenotypes. We investigated whether acutely reducing E:I balance in mouse brain could correct deficits in social behavior. We used mice lacking the CNTNAP2 gene, which has been implicated in autism, and achieved a temporally precise reduction in E:I balance in the medial prefrontal cortex (mPFC) either by optogenetically increasing the excitability of inhibitory parvalbumin (PV) neurons or decreasing the excitability of excitatory pyramidal neurons. Surprisingly, both of these distinct, real-time, and reversible optogenetic modulations acutely rescued deficits in social behavior and hyperactivity in adult mice lacking CNTNAP2. Using fiber photometry, we discovered that native mPFC PV neuronal activity differed between CNTNAP2 knockout and wild-type mice. During social interactions with other mice, PV neuron activity increased in wild-type mice compared to interactions with a novel object, whereas this difference was not observed in CNTNAP2 knockout mice. Together, these results suggest that real-time modulation of E:I balance in the mouse prefrontal cortex can rescue social behavior deficits reminiscent of autism phenotypes.
In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS) in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis and the brain symptomatogenic zones in patients with epilepsy. We discuss some fundamental concepts, issues, and remaining questions that have defined the field of EBS, and review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain.
Dysfunction in prosocial interactions is a core symptom of autism spectrum disorder. However, the neural mechanisms that underlie sociability are poorly understood, limiting the rational development of therapies to treat social deficits. Here we show in mice that bidirectional modulation of the release of serotonin (5-HT) from dorsal raphe neurons in the nucleus accumbens bidirectionally modifies sociability. In a mouse model of a common genetic cause of autism spectrum disorder-a copy number variation on chromosome 16p11.2-genetic deletion of the syntenic region from 5-HT neurons induces deficits in social behaviour and decreases dorsal raphe 5-HT neuronal activity. These sociability deficits can be rescued by optogenetic activation of dorsal raphe 5-HT neurons, an effect requiring and mimicked by activation of 5-HT1b receptors in the nucleus accumbens. These results demonstrate an unexpected role for 5-HT action in the nucleus accumbens in social behaviours, and suggest that targeting this mechanism may prove therapeutically beneficial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.