The development of an effective mechanism to detect suspicious transactions is a critical problem for financial institutions in their endeavor to prevent anti-money laundering activities. This research addresses this problem by proposing an ontology based expert-system for suspicious transaction detection. The ontology consists of domain knowledge and a set of (SWRL) rules that together constitute an expert system. The native reasoning support in ontology is used to deduce new knowledge from the predefined rules about suspicious transactions. The presented expert-system has been tested on a real data set of more than 8 million transactions of a commercial bank. The novelty of the approach lies in the use of ontology driven technique that not only minimizes the data modeling cost but also makes the expert-system extendable and reusable for different applications.
Anti-money laundering (AML) refers to a set of financial and technological controls that aim to combat the entrance of dirty money into financial systems. A robust AML system must be able to automatically detect any unusual/anomalous financial transactions committed by a customer. The paper presents a hybrid anomaly detection approach that employs clustering to establish customers' normal behaviors and uses statistical techniques to determine deviation of a particular transaction from the corresponding group behavior. The approach implements a variant of Euclidean Adaptive Resonance Theory, termed as TEART, to group customers in different clusters. The paper also suggests an anomaly index, named AICAF, for ranking transactions as anomalous. The approach has been tested on a real data set comprising of 8.2 million transactions and the results suggest that TEART scales well in terms of the partitions obtained when compared to the traditional K-means algorithm. The presented approach marks transactions having high AICAF values as suspicious.
Abstract. Opponent modeling in games deals with analyzing opponents' behavior and devising a winning strategy. In this paper we present an approach to model low level behavior of individual agents using Robocup Soccer Simulation 3D environment. In 2D League, the primitive actions of agents such as Kick, Turn and Dash are known and high level behaviors are derived using these low level behaviors. In 3D League, however, the problem is complex as actions are to be inferred by observing the game. Our approach, thus, serves as a middle tier in which we learn agent behavior by means of manual data tagging by an expert and then use the rules generated by the PART algorithm to predict opponent behavior. A parser has been written for extracting data from 3D logfiles, thus making our approach generalized. Experimental results on around 6000 records of 3D league matches show very promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.