In this study, polyvinyl alcohol hydrogel chains were crosslinked by polyurethane in order to synthesize a suitable substrate for cartilage lesions. The substrate was fully characterized, and in vitro and in vivo investigations were conducted based on a sheep model. In vitro tests were performed based on the chondrocyte cells with the Alcian Blue and safranin O staining in order to prove the presence of proteoglycan on the surface of the synthesized substrate, which has been secreted by cultures of chondrocytes. Furthermore, the expression of collagen type I, collagen type II, aggrecan, and Sox9 was presented in the chondrocyte cultures on the synthesized substrate through RT-PCR. In addition, the H&E analysis and other related tests demonstrated the formation of neocartilage tissue in a sheep model. The results were found to be promising for cartilage tissue engineering and verified that the isolated chondrocyte cultures on the synthesized substrate retain their original composition. K E Y W O R D S cartilage tissue engineering, polyvinyl alcohol-polyurethane composite, sheep model 1 | INTRODUCTION Joint problems such as traumatic lesions of articular hyaline cartilages in athletes and people have created a major challenge in the general public health. Cartilage damages in both severe injuries and osteoarthritis are irreversible processes with no approved medical product for complete repair of cartilage dysfunction. 1 Articular cartilage has a limited capacity of self-repair due to its low cellularity and avascular matrix. A Masoud Taghizadehjahed and Asma Sepahdar contributed equally to this work.
In this paper, the chitosan-functionalized ionic liquid is modified with superparamagnetic iron oxide nanoparticles to form a novel and reusable catalyst (SPION@CS-IL), which was carried out using an ultrasonic promoted approach. Transmission electron microscopy (TEM), vibrating-sample magnetometer (VSM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA) are some of the techniques that are used to fully characterize SPION@CS-IL. The created nanoparticles were discovered to be a reusable heterogeneous superparamagnetic catalyst for the environmentally friendly one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using a simple three-component reaction approach involving thiobarbituric acid, 4-hydroxy coumarin, and various aromatic aldehydes. The method is studied by performing the reaction under ultrasonic irradiation, while the approach is a “green” method, it uses water as the solvent. The isolated yields of the synthesized products are very advantageous. The catalyst has outstanding reusability and is easily removed from the products via filtration (5 runs). Short reaction times, low catalyst loadings, the nanocatalyst’s capacity to be recycled five times, and the absence of harmful chemical reagents are all significant benefits of this environmentally benign process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.